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Abstract

A total Lagrangian finite element scheme for arbitrarily large displacements and rotations
is applied to a wide range of shell geometries. The scheme decomposes the deformation into
stretches and rigid-body rotations, examining the deformed state with respect to an orthogonal,
rigidly translated and rotated triad located at the point of interest on the deformed structure. The
Jaumann stresses and strains, which are resolved along the axes of this triad, are employed in the
algorithm. Local and layer-wise thickness stretching and shear warping functions are used to model
the three-dimensional behavior of the shell. These functions are developed through the use of the
constitutive equations, certain stress and displacement continuity I;equirements at ply interfaces
and laminate surfaces, and the behavior of the shell reference surface. Two finite elements are
employed in the analyses: an eight-noded, 36 degree-of-freedom (DOF) element, and a four-noded,
44 DOF element. The 36 DOF element, which is not a compatible element with respect to the
derivatives of in-plane deformations (i.e., ¥ 5, 4y, vz, and vy are not forced to be continuous along
interelement boundaries) proves adequate for moderate rotation problems, but fails in modeling
very large rotation problems. The use of the 44 DOF element provides dramatically improved
results in the large rotation problem. The scheme is used to analyze isotropic and anisotropic
beams, plates, arches, and shells. As a special application, a detailed finite element model of an
aircraft tire is analyzed with regard to deformations resulting from inflation pressure. Finally, the

feasibility of static contact analysis is also demonstrated.
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NON-LINEAR FINITE ELEMENT ANALYSES OF COMPOSITE
SHELLS BY TOTAL LAGRANGIAN DECOMPOSITION
WITH APPLICATION TO THE AIRCRAFT TIRE

1. Introduction
1.1 Objective

The objective of this research is to investigate the nonlinear static behavior of anisotropic
shells of compound curvature via the finite element method. The code developed for this research is
capable of handling large displacements and rotations, and easily includes special cases of general
shells, such as flat plates, cylindrical shells, and toroidal shells. Though the current research
effort is limited to static analyses, equations are developed for dynamical analysis of rotating shells
by modifying the equations of Pai and Palazotto (1995a) to include the inertial effects of steady

rotation.

1.2 Overview

The finite element approach for the current work involves applying a “corotational” total-
Lagrangian method that does not suffer from some of the problems inherent in attempting to ap-
proximate finite rotations with trigonometric functions (or series expansions thereof). The present
research uses two-dimensional finite elements and warping/thickness-stretch functions to provide a
quasi-three-dimensional result. This includes the through-the-thickness direct strains and stresses.
A local deformation scheme (Pai and Nayfeh 1994a, Pai and Palazotto 1995a), which is essentially
a polar decomposition method, is used as the basis for the theory. The analysis employs the Jau-
mann (or Biot-Cauchy-Jaumann) stresses and strains. These stresses and strains are objective,

work-conjugate, and geometric.




1.8 Novelty of Research

The novelty in this research lies less in theoretical development (though the extensions of
the dynamics equations of motion are certainly that) than in application of recent theoretical
advances to the finite element method. Theoretical advances were made in the area of shear-warping
functions, as singularities possible in the baseline formulation were revealed. New warping functions
were subsequently used in the analyses. The concepts of (1) a layer-wise local displacement field
(Pai and Nayfeh 1994b), (2) Jaumann stress and strain measures, and (3) a new interpretation
and manipulation of orthogonal virtual rotations (Pai and Nayfeh 1991, 1992) are applied, and
modified where necessary, to the finite element method for the analysis of anisotropic shells. Also,
for application to the tire, the finite element code incorporates the features of tension spline curve
fitting, force-follower loading, mesh connection, and a static contact algorithm. No experimental
work was conducted under this effort, though experimental and other analytical data available were

used for comparison purposes.

1.4 Owverview

Chapter II provides the background for the current work, namely the use of two-dimensional
finite element techniques incorporating transverse shear (and, in a few cases, thickness stretching)
models to extract quasi-three-dimensional response of anisotropic materials undergoing geometri-
cally nonlinear deformations. Some of the literature on recent applications of the polar decomposi-
tion method is presented, as is some of the literature on concurrent and vector processing. Though
not fully exploited in this research, this area offers potentially high pay-offs, as the transformations
involved in the decomposition scheme are computationally expensive. At the time of this writing,
significant progress in the area of concurrent processing for finite element modeling is being made

at the Air Force Institute of Technology.
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Chapter III presents the theory of Pai and Nayfeh (1994a), largely as presented by Pai and
Palazotto (1995a), but expanded and modified for the sake of completeness, clarity, and its appli-
cation to the current research. The shear warping and thickness stretch functions are developed
as suggested by Pai and Palazotto (1995a), examined, and then found wanting. The formulation
of Pai (1995) is applied as well, but an additional modification is made resulting in significant

improvement in representing the transverse behavior. A summary concludes the chapter.

The theory is taken into the finite element domain in Chapter IV. The procedure suggested by
Pai and Palazotto (1995a) is found to be adequate by-and-large, but some modification is required.
The implementation of the decomposition scheme is found to be computationally expensive, largely

due to the linearization scheme used to discretize the equations for solution.

The results of some geometrically linear (small deformation) analyses are presented in Chap-
‘ter V, including comparisons of finite element results with those of Pagano (1969) for flat plates.
The pinched cylinder problem is solved with the current method, and the results of an isotropic

toroidal shell analysis are also presented in this chapter.

Geometrically nonlinear results are the topic of Chapter VI, where several geometries and
material configurations are examined. A deep arch having asymmetric boundary conditions is
analyzed, revealing a shortcoming in the 36-degree-of-freedom (DOF) element. This leads to de-

velopment of a new, 44-DOF element.

This finite element technique is applied to the aircraft tire in Chapter VII. Automated mesh
connection, tension spline curve-fitting, force follower pressure loading, and a contact algorithm are
added to the code for these analyses. The space shuttle nose wheel tire is analyzed in inflation and

contact scenarios.

A summary and some conclusions are presented in Chapter VIII.
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Several appendices are included. Mathematica source code used in the development of the
JAGS* program, as well as instructions for use of the program and sample input files are included
(Appendix C). Appendix D presents the dynamical equations associated with the current theory,
then extends them to model a steadily rotating shell of revolution. This appendix is provided for
the benefit of future researchers who may wish to extend the current work to dynamic analyses;
no dynamics problems are solved in the current research. In addition, material of importance that

was thought to be distracting in the main body of the text has been relegated to the appendices.

1JAGS is an acronym for “Jaumann Analysis of General Shells”
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II. Background

A review of the literature related to the current research is presented here. An overview of
shell theory with some recent developments is presented, then the developments leading to the
current state-of-the-art in finite element shell analysis are shown. A survey of numerical solution
techniques, as well as some recent developments in vector/concurrent processing are then presented.
Finally, because a goal of this research is to apply the theory to the analysis of tire-like structures,

recent progress in the finite element analysis of tires is presented.

2.1 Development of Shell Theory.

If the flat plate is considered to be a special case of a shell (a shell with infinite radii of

curvature), then classical shell theory could be said to have its roots in Lagrange’s equation
5?
DV4w+ph-§;E =q(z, y, 1) (2.1)

for the two-dimensional theory of flexural motions of flat plates. Rayleigh (1889), Lamb (1917},
and Timoshenko (1922) found exact solutions to the linear equations of elasticity for the problem,
confirming Lagrange’s result for the cases in which the flexural wavelengths are long in comparison
to the plates thickness (i.e., thin plates, lower modes of vibration). In cases of thicker plates and
higher modes, the classical solution quickly diverges from the three-dimensional elasticity solution.
In a manner analogous to Timoshenko’s (1921) introduction of transverse shear deformation into
Bernoulli-Euler beam theory, Mindlin (1951) examined the effect of including rotatory inertia and
through-the-thickness shear on the flat plate, bringing the classical solution dramatically close to
the exact three-dimensional linear solution. His work follows closely that of Reissner (1945, 1947)

and hence the theory is often referred to as “Reissner-Mindlin” plate theory.

As in plate theory, the foundational classical thin shell theory (see, e.g., Love 1891) neglected

through-the-thickness shear by applying Kirchhoff’s hypotheses to the cross-section deformation.
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While adequate for thin isotropic shells (see also Sanders 1962), Love’s theory does not model thick
or layered (composite) shells well. Applying Kirchhoff’s hypothesis to the cross-section deformation
of laminated composites is often inadequate owing to the high ratio of the in-plane Young’s moduli
to the transverse shear moduli. This is particularly true in the case of anisotropic lay-ups (as
opposed to orthotropic or transversely orthotropic) as shown by Gulati and Essenburg (1967). In
addition, normal strains and stresses, often neglected in all but very thick isotropic shells, can
be very significant for laminated anisotropic shells due to the anisotropy, high transverse thermal
expansion coefficients (in the case of thermal loads), and non-uniformity of Poisson’s ratios through
the thickness (Noor and Burton 1990; Whitney 1971; Whitney and Sun 1974; Sivakumaran and
Chia 1985; Doxsee and Springer 1991). Because of these factors, applying the classical shell theory
typically results in an artificially stiff structure; underpredicting deflections (see, e.g., John 1965)

and overpredicting stiffness (and hence overpredicting natural frequencies of vibration).

Reissner (1950), in possibly the first work on the influence of thickness stretching in the
bending of laminated composite shells, stressed the importance of (and the difficulty knowing when

to account for) effects of shearing and thickness stretching:

“The results of this investigation indicate the necessity of taking account of trans-
verse shear and normal stress in sandwich-type shells, as soon as there is an order-of-
magnitude difference between the elastic constants of the core layer and of the face
layers of the composite shell. ...The actual magnitude of the changes [in stress defor-
mation] is greatly dependent on the geometry and loading condition of the structure
under consideration so that no general rules may be given which indicate for which
elastic modulus ratio the changes begin to be significant.” (emphasis added)

Accounting for transverse shear deformations in shells has been done in several ways, but
the majority fall into three classes: (1) first-order (Mindlin) theories, (2) third-order theories (Bhi-
maraddi 1984; Reddy and Liu 1985; Dennis and Palazotto 1989), and (3) higher-order theories
(Mirsky and Herrmann 1957; Zukas and Vinson 1971; Whitney and Sun 1974; Voyiadjis and Shi

1991; Smith and Palazotto 1993).
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First-order shear deformation theories, in which transverse normal stresses are neglected
and the transverse shear stresses are assumed to be constant, are typified by the work of Chan-
drashekhara (1988), which must use shear correction factors to account for the parabolic distribution
of shear stresses through the thickness (though parabolic for the isotropic flat plate, this distribu-
tion is, in general, not parabolic for the shell). According to Di Sciuva (1987), first order theories
for multi-layered anisotropic plates and shells were first developed by Whitney and Pagano (1970)
and Dong and Tso (1972) respectively. The degenerated shell element of Ahmad et al. (1970) also
uses shear correction factors, due to the assumption that normals may rotate, but not warp or
stretch. His element uses a five DOF node having three rectilinear and orthogonal displacements

and two rotations about two in-plane orthogonal axes.

A piecewise linear assumed displacement field in conjunction with the principle of virtual
work was used by Di Sciuva (1987) for modeling moderately thick multi-layered anisotropic shells
and plates. His assumed displacement field fulfills continuity of interlaminar displacements. In
this paper, Di Sciuva gives a thorough overview of the history of attempts to adequately model
through-the-thickness shear effects in plates and shells (see also the review by Reddy 1989.)’ Plate
kinematics are described in terms of the warping and rotation of the midsurface normal by Hodges
et al. (1993). This approach avoids expanding the kinematic relations in the thickness coordinate,

but assumes that rigid body rotations are large in comparison to the warping.

Smith and Palazotto (1993) (see also Smith 1991) applied eight higher order transverse shear
theories to the nonlinear finite element analysis of composite cylindrical shells. The formulation used
the Green-Lagrange strains and second Piola-Kirchhoff stresses. The shell displacement functions
were expressed in cubic and quartic expansions of the thickness variable. The cubic expansions led
to the parabolic through-the-thickness shear distribution, while the quartic expansions contained
correction terms that yield the shear-stress-free conditions at the top and bottom of the curved

shell surface. Both linear and nonlinear transverse shear strain expressions were used. Smith
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and Palazotto showed that, for cylindrical shells of thickness h and radius R, a transverse shear
deformation theory that uses only linear terms was improved little by including nonlinear terms
for cases where h?/R? < 1. In cases of collapse, however, the use of nonlinear strain-displacement
terms for transverse shear produced a more flexible response. In a similar vein, Basar et al. (1993)
used a cubic series expansion in thickness coordinates for displacements to generate parabolic
through-the-thickness shear strains. After casting the theory in a finite element formulation, they

give examples of their applicability to finite rotation phenomena.

Belytschko and Glaum (1979) used a corotational approach (for a discussion of this approach,
the reader is referred to the works of Oden 1972, Bathe et al. 1975, Bathe 1982, and Crisfield
1991, p. 211) for static nonlinear finite element analysis of clamped arches using a curved beam
element. Their corotational formulation performs the additive decomposition, associated with
infinitesimal strains, of the infinitesimal displacement at a point in the undeformed body {du},
having components {dui, dus, dus} along three mutually perpendicular directions {z1, 23, z3},

into rigid body displacements and deformation displacements (see, e.g., Saada 1989):

duy €11 €12 €13 b 0  —wan w3 dz;
dus = | e1s ez e23 dz, + wat 0 —Wws39 dzs . (2'2)
dug e13 €33 €33 dzs —wi3 w32 0 dzs

The infinitesimal strains are represented by the e;;, which have the form e;; = du;/8z; + du; /dw;,
and the infinitesimal rotations are represented by the w;; = Ou;/0z; ~ du;/0z;. In contrast,
the current research uses finite displacement theory, in which the final orientation and length,
{dy}, of an undeformed infinitesimal fiber {dx}, is written in terms of the gradient of the finite
displacements, u; = y; — x;, as

{dy} = [F[{dx}, (2.3)
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where [F] = 8y; /0z;. This displacement gradient tensor is multiplicatively decomposed as

[ T [ 1T 1
Oy [0z Oy [0z Oy /dz3 Riy Rz Ris Unn Uiz Uis
Oya/8zy Bya/Bzy Bya/Ozz | = | Ra1 Rz Ras Uy Usp Uss | (24)
dys/dzy Oys/8zy Oys/dz3 R31 Rsys Ras Uiz Uxz Uss

where the Uj; comprise a symmetric matrix representing the finite stretches and the R;; form
an orthogonal rotation matrix describing the rigid-body rotation of an orthogonal triad originally
in the undeformed material axis orientation. Chapter III will describe how these stretches and
rotations are formulated. Where the theory of Belytschko and Glaum (1979) is limited to moderate
variations of rotation within an element, the current theory is not. Though not explicitly stated
in their paper, from the geometry and deflection data presented one can deduce that the largest

rotations evaluated were on the order of 10-20 degrees.

By using the concept of a local displacement field, Pai and Nayfeh (1994b) (see also Pai and
Palazotto 1994) develop a shear deformation theory for laminated anisotropic shells that has the
desirable attributes of: (1) continuity of interlaminar shear stresses (see also Librescu and Schmids
1991) and (2) shear-stress-free conditions on the bounding surfaces. Third order theory, while

meeting (2), does not meet (1).

Palmerio et al. (1990a) develop a moderate rotation theory for laminated anisotropic shells.
The moderate rotations are of the order of the strains, and small strain theory is used. Equations
of motion are developed through the use of Hamilton’s principle. This theory is applied to several

static problems (plates/shells) by Palmerio et al. (1990b).

An energy and momentum conserving algorithm for shell analysis is developed by Simo and
Tarnow (1994) and applied to shells experiencing large rigid-body motions (e.g., tumbling freely in
space) as well as elastic motions. The nonlinear shell model incorporates transverse shear defor-

mation as well as thickness stretch. The mathematical development uses director theory, treating
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the shell midsurface as a Riemann (two-dimensional) space with an associated director field (the
director field describes the transverse dimension of the shell). A Galerkin finite element projec-
tion is utilized to discretize the equations of motion, which are then applied to the dynamics of
an isotropic tumbling cylinder and the dynamics of three intersection isotropic plates. For these

problems, an inextensible director (no thickness stretch) version of the theory is applied.

Theories based upon layer-wise 2-D assumed displacement fields provide background for the
present work (Epstein and Glockner 1977, Epstein and Huttelmaier 1983, Murakami 1984, Hin-
richsen and Palazotto 1986, Reddy 1989). While polynomial expressions are most often used to
describe the transverse variation in displacements, Reddy’s layer-wise theory (Reddy 1987, Barbero
and Reddy 1990) requires only that the functions be continuous. The current work is similar to
Reddy’s in that the displacement functions are continuous at ply interfaces while their derivatives
with respect to z, the thickness coordinate, are not. This leads to discontinuous transverse strains
at interfaces. In the case of Reddy, this allows, but does not require, the stresses to be continu-
ous across interlaminar boundaries (Reddy 1989). It also maintains a purely displacement-based
scheme. In contrast, the current approach enforces the continuity of stresses at the interlaminar
boundaries, thereby yielding the unknown coefficients of the cubic (in the case of in-plane displace-
ments « and v) or quadratic (in the case of the thickness displacement w) displacement functions.

The other significant difference is the inclusion of the transverse normal strain in the current work.

2.1.1 Finite Rotations and Polar Decomposition Theory. Polar decomposition theory
(see Malvern 1969) has been applied to many fields, including solid mechanics (Simo et al. 1992,
Souchet 1993, Pai and Palazotto 1995b, Griffin et al. 1993), stochastics (Tsuchiya 1992), physics
(Rembielinski and Tybor 1992), and others. Many algorithms have been developed for its imple-

mentation (see e.g., Gander 1990 and Higham and Schreiber 1990).

Fraeijs de Veubeke (1972) derived a new set of variational principles through the application

of polar decomposition theory, noting that the Piola stress tensor, “...however interesting from a
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theoretical standpoint, does not appear suitable for practical applications.” (The Piola stresses are

not associated with physical body axes.)

Pai and Nayfeh (1991) introduced the concept of virtual orthogonal rotations. They point
out that since finite rotations are sequence-dependent quantities, the use of Euler-like angles to
describe the finite rotations in a structure is inappropriate. These virtual orthogonal rotations
are infinitesimal (and therefore vector) rotations about the axes associated with the displaced,
undeformed reference surface (Pai and Palazotto 1995a). Their local displacement field theory uses
the cubic local displacement field of the form suggested by Reddy for laminated plates (1984b) and
shells (1985). This assumed displacement field is applied to an orthogonal curvilinear coordinate
axis system that rigidly translates and rotates with an infinitesimal element of the body as it

deforms.

Pai and Palazotto (1995a) employed the objective, work-conjugate and geometric Jaumann
stresses and strains (Fraeijs de Veubeke 1972, Atluri and Murakawa 1977, Atluri 1984, Danielson
and Hodges 1987) in their development of a new total Lagrangian finite element formulation.
These stress/strain measures employ polar decomposition theory and have the advantages of being
geometric (rather than energy) measures of strain, and having directions aligned along the axes of

the deformed structure (Pai and Palazotto 1995b; Pai and Nayfeh 1994a).

2.2 Finite Flement Modeling

2.2.1 Previous Shell Work.  In analyses of fiber-reinforced composite materials, as in most
other areas of engineering, the modeler must trade between the level of complexity of the model
and fidelity of results. Criticality of application, cost (and time) to benefit ratio, and other factors
may play a role in the trade-off. In the modeling of composite plates and shells, the smallness of the
thickness dimension (relative to the other dimensions) is exploited to avoid fully three-dimensional

analyses (Antman 1989). Classical plate and shell theory assumptions, in which it is assumed that
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normals to the reference surface remain straight, normal, and of unchanged length after deformation
have proven inadequate for composites owing to the large ratios of elastic modulus to shear modulus
of these materials. An adequate theory must account for transverse shear strains (Reddy 1984b)

and, in some cases, for thickness stretching.

The current research depends upon decomposing the displacement field into a stretch and a
rigid body rotation. As will be seen, classical eigenvalue decomposition techniques are not employed,
but an identical result is achieved by following the deformation of two mutually perpendicular

differential elements on the shell reference surface.

Horrigmoe and Bergan (1978) investigated the geometric nonlinearity of thin shell structures
using very simple flat finite elements. Their approach used an updated Lagrangian, corotational
method. They point out that the dominant factors in the geometric nonlinearities of thin shells
are the product of finite rotations, with strains remaining small. Where some investigators have
approached the shell problem through the use of very complex elements with higher order shape
functions and many degrees of freedom, Horrigmoe and Bergan have gone the other route—choosing
instead to trade element complexity for mesh refinement, when needed. They compare their results

to curved element work by Sabir and Lock (1972) and others.

In his Ph.D. dissertation, Dennis (1988) developed a two-dimensional geometrically nonlinear
shell theory applicable to arbitrary geometries. His theory encompasses large displacement and
moderately large rotation deformation cases in which the strain is “small.” The theory utilizes a
parabolic transverse shear stress distribution through the shell’s thickness. He develops a finite
element code for the static analysis of composite shells. The theory is included in the book on

nonlinear shell theory by Palazotto and Dennis (1992). Their finite element code was called SHELL.

Silva (1989) used SHELL to investigate the snapping (static) phenomena associated with
transversely load composite cylindrical shells as did Tsai and Palazotto (1991a) in their comparison

of displacement control and the Riks method.
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Taylor Jr. (1990), Tsai and Palazotto (1991b), and Palazotto et al. (1992) extended the
work to dynamic analyses of snapping composite shells using a modified version of SHELL called
DSHELL. The DSHELL code used an implicit version of the beta-m numerical integration scheme
(Katona and Zienkiewicz 1985). Some of their analyses, in which transversely loaded cylindrical
shells were loaded beyond the dynamic snapping load, exhibited a type of erratic post-snapping
behavior later shown by Greer and Palazotto (1994) to be numerical instability resulting from
choosing too large an integration time step for the analysis. Later work by Greer and Palazotto
(1995) and Forral and Palazotto (1994) indicated that, with the choice of an appropriate time step,
the erratic behavior persists, but takes on characteristics associated with chaotic vibration rather

than numerical instability.

Wagner (1990) developed a total Lagrangian finite element to analyze the static behavior
of nonlinearly deforming elastic shells. His method formulates the fully nonlinear strains in the
axisymmetric case, and he applied his model to the transversely (point) loaded spherical shell, the
torus subjected to an axisymmetric ring load (for the tire, this would be equivalent to pinching the
tire side-walls around the entire circumference), and a spherical rubber shell under point load. As
Wagner’s analysis deals with isotropic materials with thin cross-sections, he invokes the “Reissner-
Mindlin-kinematic”, in that transverse shear strains occur without cross-section warping. That is,

the undeformed surface normal need not remain normal, but planar cross sections remain planar.

Sacco and Reddy (1992) compared their first- and second-order moderate rotation theories
and the von Kdrman plate theory with shear deformation to 2-D finite elasticity theory. They

found their second-order theory to be closest to the elasticity theory.

Wriggers and Gruttmann (1993) developed a finite element formulation using polar decom-
position for the static analysis of thin shells using the Reissner-Mindlin theory (no cross-sectional
deformation). They use order-dependent Euler angles to describe the finite rotations. The method

is applied to an end-loaded cantilever beam, an end-loaded and clamped L-shaped beam, a ring-
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plate loaded at the free edge, and a hyperbolic paraboloid shell subjected to couples at the hinged

supports.

A large strain theory was used by Schimmels and Palazotto (1994) in investigating the elastic-
plastic response of layered composites. The shell model incorporates through-the-thickness shear
(parabolic) and transformation of the Cauchy stress-strain relations into Lagrangian coordinates.

These static analyses showed the more flexible response generated by allowing in-plane extensibility.

Pai and Palazotto (1995a) developed the approach upon which the current work is based. A
polar decomposition method is applied to the large deformation problem with the rotations being
described by the order-independent orthogonal virtual rotations. The total Lagrangian theory al-
lows for through-the-thickness shear by including shear warping functions. These functions enforce

continuity of interlaminar stresses and stress-free conditions at the free surfaces.

With the goal of developing a finite element theory more closely related to classical shell
theory than that of Ahmad et al. (1970) and many other related formulations (including the
current one), Simo et al. (1989) (see also Simo et al. 1990) developed a geometrically exact
stress resultant shell model for isotropic shells. The single director theory allows for transverse
shearing and thickness stretch, though the director is by definition straight and may not “warp”
(as is permitted by the current theory). An example of a transversely loaded rubber sphere is used
to demonstrate dramatic (52 %) thickness change, though in the example transverse shearing is
not allowed. Simo et al. (1992) describes the application of this theory to nonlinear dynamics.
The following problems are solved: (1) an isotropic tumbling cylindrical panel, (2) free motion
of an isotropic spherical panel, (3) the pinched cylinder, and (4) the “pencil toss” problem of
free motion of a flexible pencil and its subsequent motion after forces are removed. Simo’s work
differs from the current work in several respects: (1) Simo uses extensible director theory, in which
a two-dimensional reference surface (the so-called Cosserat surface) and its associated director

field describe the material deformation, (2) the theory is expressed entirely in stress resultants, so
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numerical integration through-the-thickness of constitutive relations is not done (i.e., the resultant
is the unknown, not a stress (derived from displacements) as a function of the thickness coordinate
that must be integrated to get the resultaht), (3) the method involves updating the orientation of
the coordinate system (though Simo et al. 1990 shows that this is not necessary for “thick” shells)
incrementally, and (4) warping in the thickness direction is not permitted, though piecewise-linear
(as opposed to piecewise cubic in the current work) variation in displacement could arise in a

multiple director scheme in which each layer has its own director.

2.8 Solution Techniques

Rheinboldt and Riks (1983) have provided an overview of solution techniques for nonlinear
finite element problems. Such nonlinear problems are, by their nature, iterative, and the authors
discuss solution methods for several types of nonlinearities: material, geometric, force, and kine-

matic boundary.

2.8.1 Static Problems. Many analyses of shell structures involve phenomena such as
snap-through, collapse, and/or buckling. These responses are characterized by limit points, bifur-
cation points, and unstable regions of the force-displacement curve (i.e., greater displacement is
not accompanied by increased resistance by the structure). In such analyses, conventional Newton-
Raphson techniques fail, and methods such as those by Riks (1979) (and modifications thereof;
see, e.g., Crisfield 1981) are often used. These methods establish a search region to determine the
equilibrium solution. The search region may be delineated by an arc, a sphere, an ellipse, or some
other constraining geometric construct. These methods facilitate the tracing of very convoluted
(if physically unrealizable) load-displacement curves, finding all possible equilibrium states: stable

and unstable.




2.8.2 Dynamic Problems.  Finite element problems in nonlinear analysis frequently take

the form of

M (t) + Cx(t) + K(x())x(t) = £(2). (2.5)

The beta-m family of integration methods (Katona and Zienkiewicz 1985) are commonly used
to integrate such equations. These are single-step methods applicable to any set of initial value
problems. Many other single-step methods (Newmark, Wilson, Houbolt, etc.) are special cases of

the beta-m method.

2.4 Vector/Concurrent Processing.

As mesh sizes increase and/or shape functions become higher order, computational burden
increases. Nonlinear problems, in which the stiffness matrices frequently depend upon the displace-
ment vector, use large amounts of computational time performing the integrations necessary to
formulate the elemental stiffness matrices (this is by far the biggest computational burden for a
current in-house dynamic finite element model, DSHELL). Application of vector/concurrent pro-
cessing appear to fall into three broad categories. These categories, along with some appropriate

references, are described below.

2.4.0.1 “Smart” Compilers. A smart compiler on a vector/concurrent computer is
able to recognize independent tasks and attempt to optimize the code for execution. Among other
parameters, the compiler can optimize the code for the number of internal processors (usually
< 10). Even programs written with little forethought as to vector/concurrent processing can be
optimized (to varying degrees) by such compilers. Obviously, prudent coding can maximize the
advantage offered by the compiler. Such code can generally be run as easily (though perhaps not as
efficiently) on a one-processor machine; a big advantage of this method. The coding performed in
the current research effort was geared toward this approach. Domain decomposition, a technique

having its roots in the work of Przemieniecki (1963), is frequently employed in concert with smart
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compilers, as exemplified in the work of Beran (1994), Moran and Beran (1994), Lutton and Beran
(1994), Gilbertsen and Belytschko (1990), Luo and Friedman (1990), Farhat and Roux, (1991,

1992), Navon and Cai (1993), Babugka et al. (1992), and Johan et al. (1992).

2.4.0.2 Networking. In this approach, separate workstations are networked together
using commercially available networking software. Unlike the smart compiler, the programmer must
decide which workstations will do which tasks and when, and the code is not generally portable to

other machines (Bertrand and Tanguy 1992).

2.4.0.3 Massively Parallel Processing. Computers having hundreds or even thou-
sands of processors, such as the Connection Machine CM-2 system, have demonstrated extremely
fast processing speeds. For example, Johnsson and Mathur (1990) used one CM-2 processor for each
of 32,000 elements (400,000 degrees of freedom) in a linear finite element analysis, and achieved a
peak performance of 2.5 G flops s™1. (See also Belytschko and Plaskacz 1992; Law and Mackay

1993; Malone and Johnson 1994a, 1994b.)

2.5 Tire (and related) Modeling by Finite Elements.

In dynamic analyses, the inertias produced by rigid-body rotation have frequently been han-
dled by the Galilean transformation (Sve and Herrmann 1974; Padovan et al. 1984; Padovan and
Kazempour 1989) in which a moving reference frame is attached to the rolling object eliminating
the time-dependency of the problem. Through the use of this technique, the problem becomes a

static analysis, obviating the need for time integration.

The static contact problem was attacked using flat triangular finite elements by DeEskinazi
et al. (1978). A meridional strip of a passenger-car tire cross-section was analyzed in inflation and
contact. The geometry was somewhat artificial in that curvature in the circumferential direction

was not included.




Rolling contact may be modeled in a number of ways. Kennedy and Padovan (1987) mention
five ways rolling contact has been introduced into finite element formulations: (1) directly via
boundary conditions, (2) the Hughes-type scheme, (3) the method of influence coefficients, (4)
use of constraint equations, and (5) using “gap” elements. In his three-dimensional finite element

formulation, Kennedy uses of the gap element method.

A three dimensional finite element model is used by Kulkarni et al. (1990, 1991) to model
repeated, frictionless rolling contact. Likewise, Faria et al. (1992) used a 3-D finite element
model including the effects of viscoelasticity, rolling contact, applied torque, and constant pressure
volume. Their analysis investigated static and steady-state rolling problems. Their results showed

qualitative agreement with experimental and theoretical results.

Noor and others have been responsible for much of the research performed through numerical
modeling of tires. An excellent survey paper (Noor and Tanner 1985) outlines advancements made in
tire modeling both outside and within the National Tire Modeling Program (NTMP). Semi-analytic
finite elements, in which the shell variables are represented by Fourier series in the circumferential
direction and piecewise polynomials in the meridional direction were used by Noor et al. (1990)
in investigating nonlinear tire response. Noor et al. (1987) examined the types of symmetries
often present in tire problems and how these symmetries may be exploited. Mixed finite element
models are used having independent shape functions for stress resultants, strain components, and
generalized displacements. A reduced basis technique is described in the work of Noor et al. (1993)
for reducing the computational requirements for finite element analysis. In this technique, the vector
describing the structural response (in this case the strain parameters, stress-resultant parameters,
and nodal displacements) is examined with respect to changes in design variables (ply orientation,
fiber diameters, material properties, etc.). These vector derivatives, called sensitivity coefficients
(which are themselves vectors), are written as linear combinations of (initially unknown) basis, or

approximation, vectors. Then, using a Bubnov-Galerkin technique described in the reference, finite
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element equations are developed representing the response and sensitivity coefficients by a small
number of algebraic equations written in terms of the amplitudes of these approximation vectors.
This “reduced basis” of approximation vectors significantly reduces the computational expense of
calculating the sensitivity coefficients, which can be very high in a complex model having many

degrees of freedom.

Padovan et al. at the University of Akron have attacked the tire problem from many direc-
tions. The tire has been modeled using the classical ring on foundation model (1976) to examine
the standing wave phenomenon seen behind the contact patch in rolling tires. These waves, un-
der certain conditions (at critical tire speed, or resonance), can initiate catastrophic tire failure.
Padovan (1977) employed a Lindstedt-Poincaré perturbation method to study the nonlinear effects
of circumferentially traveling loads on rings and cylinders, where the road contact patch is modeled
as the traveling load. Zeid and Padovan (1981) developed a new static/rolling contact element for
applications to tires, rail-car wheels, roller bearings, and similar structures. The contact element
has application to both linear and nonlinear problems. Again the classical ring on foundation
model is used with two-dimensional finite elements. In 1982, Padovan used a family of generalized
Rayleigh quotients and 3-D non-polar elasticity theory to investigate the spectral and critical speed
characteristics of a structure subject to moving loads. The finite element method with an updated
Lagrangian method was then applied to the problem by Padovan et al. in 1984. This method
attaches a moving Lagrangian observer to the wheel axle to make the solution entirely spatially
dependent, eliminating the need for time integration (see also Kazempour and Padovan 1989). In
addition, the gap element method of Stadter and Weiss (1979) and the Hughes type contact strategy
of Padovan and Paramadilok (1985) are used to handle the rolling contact problem. Padovan (1987)
developed a theory to handle the steady-state and transient response of a moving/rolling nonlinear
viscoelastic structure. Fractional integrodifferential representations (Grunwald 1867; Bagley and
Torvik 1983 & 1985, Eldred et al. 1995) are used to model the viscoelastic response of the tire.

Kennedy and Padovan (1987) use three-dimensional brick and their associated degenerate thick
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shell element counterparts (see Ahmad et al. 1970, Surana 1983) to model the steadily rolling tire.
Direct time integration is avoided using the Galilean transform. The gap element method is used

to model rolling contact.

Lindsley and Cusumano (1993) modeled the tire as a nonlinear, viscoelastic, shearable and
extensible ring on a viscoelastic foundation. They compared their model to the finite element
results of Medzorian (1992). The simple ring model is much simpler than the finite element model,
can be run on a PC, and showed good correlation to the finite element model in calculating critical
speeds. The ring model incorporated the full complement of inertial forces and due to rotation,

and included stiffening due to inflation.

Transient contact/impact problems are analyzed by Nakajima and Padovan (1987) using the
theory developed by Padovan (1987). Rolling/sliding impact of tires with road obstructions is

considered.

Another impact-contact method, the so-called “pinball” method, is the subject of a paper by
Belytschko and Neal (1991). This method requires less conditional branching than other methods

and thus lends itself to vectorization.

2.6 Summary

So where does the current work “fit” into the extensive body of literature on finite element
analysis of shells? The theory described herein is a geometrically ezact theory as defined by Simo
et al. (1989), in that no restriction is placed on the allowable deformation or rotation of the shell .
In keeping with this, finite deformation theory, rather than infinitesimal strain theory, is employed.

Thus geometrically nonlinear problems may be examined.

This work uses a materially linear formulation, in that the material response is assumed to be
linear throughout the range of deformation. So while the theory is not kinematically limited to small

strains, results must always be interpreted in view of the known material response characteristics.




The current work employs a layerwise and continuous polynomial field throughout the thick-
ness of a composite laminate to describe the transverse shearing and thickness stretching. This
is similar in principle to the layerwise theory of Reddy, but differs in that continuity of interlam-
inar stresses is enforced in generating the displacement polynomials. It differs from director-type
methods in that while a director may stretch, it does not warp. The layerwise polynomials permit
warping of the cross section. Furthermore, the layerwise displacement field, while continuous at a
ply interface, may abruptly change direction at the interface—the so-called “zig-zag” displacement
field. This leads to discontinuous transverse shear strains, allowing for the (physically correct)
continuous transverse shear stresses. This is in contrast to the approach of Palazotto and Den-
nis (1992) and many others who have used a single cubic polynomial to represent displacement
through the entire thickness of the laminate. This leads to continuous transverse shear strains but

discontinuous stresses.

In the current formulation, all kinematic behavior is related to the original, undeformed
coordinate system. Even though the approach utilizes decomposition of the deformation gradient
tensor, yielding the rigid-body rotation matrix, the members of that matrix are, at each and every
increment, described in terms of the global displacements and their derivatives, and the initial
curvatures. Though not unique in this regard, it stands in contrast to the almost universal use
of updated-Lagrangian corotational techniques of large displacement/finite rotation analyses, in

which the original undeformed coordinate system is discarded.
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III. Theory

The theory presented in this chapter is chiefly that of Pai and Palazotto (1995a). The theory
makes use of the polar decomposition method to facilitate the use of a local (and linear) displace-
ment field at an infinitesimal region of interest in the nonlinearly deforming body. In this chapter,
the theory is presented in the context of static (as opposed to dynamic) analysis’. The finite

element implementation of the theory, presented in Chapter IV, is limited to static analyses.

3.1 Stress and Strain Theories

1t is desirable to be able to use experimentally determined (via tensile tests of coupons, etc.)
material properties in constitutive equations. Unfortunately, not all measures of stress and strain
lend themselves to this. Useful measures in this regard are (Pai and Nayfeh 1994a): (1) work-
conjugate, i.e., the stress and strain measures are mathematically related in such a way that the
elastic energy of the solid can be entirely accounted for, (2) objective, i.e., the stress and strain
measures are invariant with respect to coordinate system (a by-product of this property is that pure
rigid body rotations produce no strains), (3) directional, in that the stress and strain measures have
identifiable directions, and (4) geometric, or the directions of the stress and strain measures are
associated with the deformed body axes so that they may be matched with the natural boundary
conditions of a structural system without having to transform the measures to another coordinate
system. The Jaumann stresses and strains, which are equivalent to local engineering measures,

meet these criteria.

3.1.1 Jaumann Stress and Strain Measures. — The major differences between the Jaumann,
Cauchy, and Second Piola-Kirchhoff Stress/Strain measures are outlined in this section (refer to

Figure 3.1). The rectangular Cartesian case (rather than curvilinear) is used for illustrative pur-

1In Appendix D, the dynamic equations associated with this general shell theory are presented, then modified for
application to a special case: the rotating toroidal shell. The formulation accounts for the inertia generated by rigid
body rotation of the tire.
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(a) Jaumann

Figure 3.1 Deformation of an infinitesimal volume element

poses. The Jaumann stress Jp,, and strain By,, are given by Pai and Palazotto (1995a)

1

mn = '.n d nfn"m 3.1

J, 542 dsdms (dzmfm-in + dz,fheim) (3.1a)
1/ ou . Ou ,

Bnn = 3 (8:1:’" Int ggn .lm> (3:10)

where the £, are the force resultants on the faces of the deformed parallelepiped (Figure 3.1). For
example, f; acts on the deformed dzy dzz plane. The local displacement vector u is measured with

respect to the displaced location of a material point, hence at any given point on the reference
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surface, u = 0, though its derivatives (which will give rise to the strains) are non-zero. As can be
seen from Eq (3.1b), the Jaumann stresses and strains are defined with respect to the orthogonal
directions, denoted by unit vectors iy, associated with the stretched and rigidly rotated volume
element (Figure 3.1(a)). Note that the stress measures are associated with undeformed cross-

sectional areas.

On the other hand, the second Piola-Kirchhoff stresses Sy, and Green’s strain L,,, are

defined by Pai and Palazotto (1995a)

3

dzidzade; d2myfim) = n; (Sm(m)Amyin)) (3.2a)
1 . .

Lmn = 5 (/\(m)l(m)-)\(n)l(ﬁ) — 6mn) (3.2b)

where A, = ||E,||, the magnitude of the lattice vector (Washizu 1982), and the parenthesis suspend
the tensor summing convention. In the figure, it is seen that the second-Piola/Green measures
are associated with the directions along the deformed (and, in general, not orthogonal) edges
of the element, as shown in Figure 3.1(b). The directions of the lattice vectors correspond to
the directions of the unit vectors ig (note the circumflex on the subscript). So, in general, the
components of the second-Piola stresses are along neither the undeformed coordinate system, as
are the Cauchy measures depicted in Figure 3.1(c), nor its rigidly translated and rotated counterpart
in the deformed body (as are the Jaumann measures). This is a consequence of the Green’s strains
being energy-related measures (dealing with the change in squared length of a fiber) rather than
strictly geometric measures, like Jaumann or engineering strains. To use the Jaumann measures,
which are local, the effect of rigid body translation and rotation must be removed so that only
the effect of stretching (the source of elastic strain energy) is seen. The means to perform this

are now shown in an example using the polar decomposition method, which explicitly performs this
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separation of rigid body and stretching movements, allowing Eq (3.1b) to be formed very quickly.

According to Malvern (1969, p. 173):

“The fact that the deformation at a point may be considered as the result of a translation
followed by a rotation of the principal axes of strain, and stretches along the principal
axes, was apparently recognized by Thomson and Tait in 1867, but first explicitly stated
by Love in 1892.”

By way of the polar decomposition, the Green and Jaumann strain measures are now compared

and contrasted using the following (two-dimensional) global displacement field (Torvik 1992):
Uy =atzizy, Ug = bt zy (3.3)

where the u; are components of displacement, the z; are the global coordinates of an undeformed
point in the body, @ and b are constants, and ¢ represents time. The coordinates (y1,y2) for a

material point, originally located at (z;,z2), may then be written as
y1 =1+ ug, Y2 =2+ Uz (3.4)

The deformation gradient tensor [F] is given by

. or, _ dyr B l4+atzy atzy

1k == =
b5} 7] ’
Tm Tm 0 1+bt

[F] = (3.5)
where r, is the position vector to a displaced point (y1,y2). The polar decomposition? is now

employed: The deformation gradient tensor may be decomposed into the product of two tensors,

[R] and [U], where [R] describes the rigid rotation of the body at a material point, and [U] describes

2Here the decomposition is discussed in the context of rectangular Cartesian coordinates. But the decomposition
may be performed in curvilinear coordinates as well (see, e.g., Pai and Palazotto 1995b)
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the material deformation (stretching) at that point:

[F] = [R][U]. (3.6)

These matrices have some special properties. The matrix [R] is an orthogonal rotation matrix,

that is

[RI"[R] = [1], (3.7)

where [I] is the identity matrix and the stretch tensor [U] is symmetric:

[U]T = [U]. (3.8)

The Green deformation tensor [C], is defined as (Malvern 1969, p. 159) [F]T[F] = [U]?. For any
admissible (i.e., one-to-one) transformation between the z; and the y;, [C] is a positive definite

symmetric matrix, and hence may be decomposed as (see, e.g., Strang 1988)

[C] = [U]* = [Q][A][Q]™ (3.9)

where [Q] is the matrix of eigenvectors of [C] and [A] is a diagonal matrix having the eigenvalues

of [C] as its members. The matrix [U] may then be written as

[U] = [Q][A]=*/7[Q] . (3.10)

As a numerical example, consider the material point originally at (21, z2) = (1, 1) at time ¢t = 1
sec, witha=1m~! s~ and b = 1 sec™!. The deformation of an infinitesimal region near the point
of interest is illustrated in Figure 3.2. In the figure, the candidate point is A, and the undeformed
region is described by the square ABCD. This square deforms to ABCD through the relationships

of Eqns (3.3) and (3.4). Given the above parameters, the displacement gradient tensor [F] is given




D

[N
»

>
Y Cio

1D

Figure 3.2 Comparison of Jaumann and Second-Piola/Green measures

whose eigenvalues A; and eigenvectors Q; are

—0.788205

Ay = 243845, Q =

0.625412

Hence [A] and [Q] are given by

243845 0
[A] =

2 1
[F] = , (3.11)
0 2
—0.615412
and Ay =6.56155, Qz = . (3.12)
—0.788205
~0.788205 —0.615412
, [Ql= , (3.13)
0.615412  —0.788205

0 6.56155
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and from Eq (3.10) one obtains

e 1.94029  0.485071
[U] = [QI[A]"/?[Q]™" = ; (3.14)
0.485071  2.18282

and the rotation tensor is

cosfl  sinf 0.970143  0.242536
R] = = , (3.15)

—sinf cosf —0.242536 0.970143

where 6 = cos™1 0.970143 = 14.0362° indicates the clockwise rotation of the j-frame to the i-frame.
A more intuitive view of the polar decomposition may be seen by recognizing its application as

(Malvern 1969, p. 174)

1. a stretch by the operator U
2. arigid-body rotation by the operator R.
3. and finally a translation® to A

Consider vector AB of Figure 3.2 as these are applied (Figure 3.3(a)). First, the stretch tensor of

Eq (3.14) is applied to vector AB = {dL, 0}:

1.94029  0.485071 dL 1.94029dL
= : (3.16)

0.485071 2.18282 0 0.485071dL

3 As Malvern (1969, p. 174) points out, in this Cartesian example, the translation changes neither the vector nor
its rectangular components. These would change in curvilinear components, however, and the curvature matrices of
Eqns (3.66) will be used to describe theses changes, which arise from taking derivatives with respect to curvilinear
coordinates.




Figure 3.3 Step-wise application of the polar decomposition method

Then this stretched fiber is rotated by [R] of Eq (3.15):

0.970143  0.242536 194029 dL 2dL
= . (3.17)

—0.242536 0.970143 0.485071dL 0

Likewise, applying the stretch tensor to vector AD = {0, dL} of Figure 3.2 (see Figure 3.3(b))

results in
1.94029 0.485071 0 0.485071dL
= . (3.18)
0.485071 2.18282 dL 2.18282dL
Again, this stretched fiber is rotated by [R] of Eq (3.15):
0.970143 0.242536 0.485071dL dL
- . (3.19)
—0.242536 0.970143 2.18282dL 2dL




The Jaumann strain?, is given by

0.94029 0.485071
B]=[U]-[1]= (3.20)

0.485071 1.18282
Note that Eq (3.20) includes only the elastic stretches at a material point (the rotation tensor is
not present). In comparing this to Eq (3.1b), it is seen that the stretch tensor is equivalent to the

gradient of the local displacement vector (given by u in Eq 3.1b) in the rigidly rotated coordinate

system denoted by the {ij23}-basis. The Green-Lagrange strain is given by (Malvern 1969, p. 158)

L= (U -[M)= (3.21)

N | =

As an aside, while the tensors [B] and [L] above have different eigenvalues (principal strains),
they have identical principal directions, as they should. The wvalues of the principle strains are
determined by the choice of measure (Jaumann vs. Green), while the principle directions are not.
Also note that the transformation between Green-Lagrange and Jaumann strains is given by (Pai

and Palazotto 1995b)
1
[L] = 5[B] ([U] + 1)), (3.22)
and substituting the results into the above equation will verify the transformation.

A significant disparity between the two strain measures is seen. But the disparity is not only

in magnitude, but direction as well.

First consider the direct strains. The Jaumann strain Bso has the direction illustrated in

Figure 3.2 by the unit vector iz, while the Green strain Ljg is along i3. Now consider the strain

4While not naming this strain “Jaumann” per se, Malvern (1969, p. 164) refers to the components of [B] as “unit
extensions” (for direct strains referred to herein as B1; and Bjz) and “angle change” (for the shear strain Bjj).
He notes that, in the finite deformation case, the so-called “angle change” is not the geometric angle change, but is
dependent upon the stretches, as will be shown. He attributes his derivation to the works of Truesdell and Toupin
(1960) and Eringen (1967).
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magnitudes as they relate to the “fibers” forming the edges of the infinitesimal area ABCD. In
particular, consider fiber AD which deforms to become AD. In deforming, the fiber has rotated
arctan(dL/2dL) = 26.565° clockwise, and has stretched to a new length of [(2 dL)? + dL2] i =
V5dL, a physical stretch of 123.6%. Neither the Jaumann strain, Bz, = 1.18282 (from Eq 3.20),
nor the Green strain of Lyy = 2 (from Eq 3.21) are representing this physical stretch. The Green
strain represents half the change in the squared length of the fiber, i.e., %(\/52 —12) = 2. The
Jaumann strain Bss = 1.18282 represents the projection of the actual physical stretching of fiber
AD onto the direction iz. This geometric meaning is shown as follows. Let the physical straining

of fiber AD in the engineering strain sense be denoted by e, as:

_ lAD| - |IAD|| _ v5dL—dL

DI T = 1.23607. (3.23)

€2

Let the “stretch” of the fiber be defined as the ratio of the deformed length to the original length,
or

Uap = ||AD||/||AD|| = V5dz/dz = V5 = 1+ e = 2.23607. (3.24)

Now note the “shear” (rotation) angle associated with the ‘2’ direction, denoted g2 in Figure 3.2.

This angle may be used to find the projection of the stretch Usp onto the iz direction, Uss as
Uz = Uap cosvez = (1 + e3) cos ve2 = 2.18282, (3.25)

where g2 is given by (the geometric interpretation of the angle may be seen in the inset of Fig-
ure 3.2)

Y62 = tan~? Ulz/Uzg. . (3.26)

Note that the values of Uz and Usy of the right stretch tensor describe the stretching and rotation
due to deformation of the infinitesimal fiber of length dL originally located along the ja direction.

Likewise, U1; and Uyz describe the deformation of the fiber originally located along the j; direction.
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Finally, the Jaumann strain, Bss is seen to be

Baa = (14 e3)cosvsa — 1 = 1.18282. (3.27)

In the same manner, By; describes the physical stretching of fiber AB projected onto the i; direc-

tion. Notice that for small shear (cos+gz — 1) the result yields the engineering strain result:

Bas = (1+e€3) — 1 = e = 1.23607. (3.28)

If the additional constraint of small direct strain is enforced, i.e., e3 < 1 it is found that the Green

strain approaches the engineering strain result as well. This may be shown as follows (Torvik 1992).

The Green strain may be written as®

Ez-E; —dz?  (VEz-Ez +dz) (VEz-E; — dz)
2L99 = 122 = 127 . (3.29)

But for small strain, v/E4-Es & dz, leading to

2dz (\/ Ez'Ez - d(l)) ~ 9 (\/Ez'Ez — dm)
dz? = dz

2L22 ~ ~ 262. (330)

Examining the shear strains, from Eq (3.2b) it is seen that the shear strain L5 is simply the

dot product of the lattice vectors.
1
L12 = -é- (El'Ez) =1. (331)

In general, the lattice vectors are not of unit magnitude, so this strain is not the change in angle

between two originally perpendicular fibers, which for this example is found from the geometry in

5Note that E3 is the lattice vector related to the deformation of dL ja (Washizu 1982).
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Figure 3.4 Geometric interpretation of the Jaumann shear strain

Figure 3.2 as

tan v = —Qide =05, or 7 =26.565°= 0.46365radians (3.32)

From Eq (3.20) and the inset of Figure 3.2, the Jaumann shear strain Bjs is given by:

Blg = Ulg = ng tan Y62 = 0.485071. (333)

The first thing noticed is that Bys = 0.485071 radians is much closer to representing the actual
angle change of v¢ = 0.46365 radians than is L1z = 1. But why is it different at all? Consider
Figure 3.4, which describes the geometry of the problem. In terms of the geometry shown®, the

shear strain is given by

2B13 = Uspsinys: + Uap sinvye2 = (1 + e1) sinys1 + (1 + e2) sin ye2. (3.34)

From this equation, it is seen that the tensorial strain, 2By, approaches the physical angle change,
76, as both of the following are approached: (1) the stretch becomes negligible (Usp — 1, Uap — 1)

and (2) the shearing angle is small (sinys1 — 7e1, sinys2 — 7e2). Under these conditions, the

8The origin of Eq (3.34) covered in Section 3.3.
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engineering strain result is obtained (see also Malvern 1969, p. 165)

2B13 = 76 = 761 + 762- (3.35)

To summarize, while both strain measures asymptotically approach the engineering strain
values as strains become infinitesimal, the Jaumann measures are closely related to the engineer-
ing strains, even for (small) finite strains. This is an important feature, as it allows constitu-
tive data from experiments (engineering measures) to be used in the numerical analysis without

transformation”.

In the following section, the Jaumann measures are generalized to curvilinear coordinates.

3.2 Kinematics in Curvilinear Coordinates

A guiding assumption in the following theoretical development is that a vector-oriented deriva-
tion can be readily related to the physical problem at hand and hence is more easily understood
by the engineer. Furthermore, such an approach is more easily implemented numerically (on the
computer). For these reasons, the derivations of this chapter and the next use a vector approach,

rather than tensorial notation, wherever possible.

The kinematic relationships for the shell of revolution are now developed. This geometry is
chosen for its generality, in that many other geometries (plate, cylindrical shell, spherical shell) are
special cases of this shell. Furthermore, as one of the applications for the current research is the
aircraft tire, the torus represents a good starting point®. Consider Figure 3.5, a circular torus. The

body-fixed Cartesian coordinate system

7A caveat is in order here: The lack of a need for transformation between stress measures reflects the use of
the nominal or engineering stress which is referred to the undeformed cross-sectional area of the test specimen.
This would reflect the use of test data at load levels below the ultimate load of the specimen (where necking of the
specimen begins to occur). Beyond this load level, by assuming such plastic deformation occurs at constant volume,
a corrected measure may be employed as shown by Malvern (1969, p. 332).

80f course the actual tire is not of circular cross section, but this affects mainly the curvature terms. Hence the
new curvature terms associated with non-circular shells of revolution are developed in Chapter VII
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Figure 3.5 Coordinate system for the circular torus

et =zi(2!, 22, 2%) (3.36)

has unit basis vectors of orthogonal Cartesian system e; (the superscripts indicate contravariance

of the tensor components, they are not exponents). The orthogonal curvilinear coordinate system

Y=Yy, o, o°) (3.37)

has basis vectors a; (in general not of unit length). The surface has radius of revolution R. The
directions of these “toroidal” coordinates are chosen as shown to correspond to the reference sur-
face being described, namely the circular torus. Referring again to Figure 3.5, the y' coordinate
describes the circumferential location, y? the meridional location, and 3® the radial location. Fur-

thermore, the position of a point A on the shell can be described in terms of the X? or Y*? through
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the transformation

X! = (R - y®siny?)siny’ (3.38a)
X? = (R—y®siny?) cos y* (3.38b)
X3 = —yB cosy?. (3.38¢)

The basis vectors for the curvilinear system, a;, may now be found by a; = %{%ej. That is

ax? X2 ox3

a; = By e1 + By ez + 8y1 es3 (339&)

axt 0X? o0x3
az = 8y2 e; + 3y2 ez + ayz e3 (339b)

ox! 0xX? ox3
ag = 8y3 e ay3 e2 8y3 e3 (339(:)

which yields, from Eqns (3.38),

a; = (R - y’siny?) cosyle; — (R — y3siny?)siny'e, (3.40a)
az = —1° cosy? sinyley — y3 cosy? cosylez + 33 sin yes (3.40Db)
ag = —siny? sin yle; — siny? cosylez — cos yles. (3.40c¢)

The basis vectors a; are not, in general, of unit magnitude, but the corresponding unit vectors are

easily found by dividing each vector by its magnitude.

j1=cosyle; —sinyle, (3.41a)
j2 = —cosy®sinyle; — cosy® cosyles + siny?es (3.41b)
j3 = —siny’sinyle; —siny? cos yles — cos yes, (3.41¢)

where ji = ai/||ai||, and ||a;|| is simply \/agy-ag).
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The basis vectors, e;, of the Cartesian coordinate system are of fixed orientation throughout
the space they describe. That is, if the triad described by ey, ez, and e3 is translated from the origin
to any point in three-space, their directions do not change. This is not the case with the new basis
vectors, ji. The directions of these vectors are uniquely determined by the coordinates (y!, y?, y®) at
which they reside. This becomes important in taking derivatives of any vector quantity measured
with these unit vectors. Subsequently, all of this is to be used in defining strain-displacement
relationships. For example, if there exists some vector V, given by V = Vle; + V2ez + V3e;3, its

k

derivative with respect to a direction associated with the Cartesian coordinates, *, may be taken

as

av vt  av?  av3

9aF = ggF et T et res (342)

Note that there are no terms involving the derivatives of the unit vectors themselves. This is because
they do not change direction when moving along a coordinate curve (or Cartesian axis). This is
not the case with the curvilinear system. Because the directions of the unit vectors change along a
coordinate curve (curvilinear axis), expressions must be formulated that describe the derivatives of
these unit vectors. One way to describe these derivatives is through the use of Christoffel symbols.
But these are cumbersome and do not lend themselves well to numerical implementation. Instead,
in keeping with the desire to develop a vectorial approach to the equations, the derivatives of the
unit vectors will be written using “curvature matrices”. The use of this term reflects the fact
that the numbers populating these matrices will reflect how “curved” the coordinates are. For
example, a unit vector moving along a curvilinear axis having a small radius (large curvature)
changes direction rapidly, while a unit vector moving along an axis having an infinite radius (a
straight line) does not change direction at all. Thus entties in the curvature matrix will reflect how

“curved” the axes are at a particular point.
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To begin the the development of the curvature matrices, it is noted that the expressions of

Eq (3.39) may be written in matrix form as

[ aX! 8x? o6x° 7
ax yt Ayt Ayt €1
ax! 8x? oax3
= , 3.43
az 3y2 8y2 8y2 €2 ( )
a axl 8x? oax3 o
3 L 33 98 98 3

or

{a} = [3]™{e}, (3.44)

where
oxt ax' axt
oyt  Oyr Oy
2 2 2
)= | X0 oX°T X (3.45)

Syt 6y? 9y

ax3® 9x3 oax3

oyl Oy? Gy

the Jacobian of the transformation. From Eqns (3.38), [J] is found to be

(R—y3siny?)cosy! —y3cosy?siny! —siny?siny!
[l = —(R-y3siny?)siny! —yBcosy?cosy’ —siny?cosy! | (3.46)
0 3 sin y? — cos 32

Similarly, an equation for the unit vectors e; may be written. First, note that a diagonal matrix

[g], consisting of the squares of magnitudes of the vectors a; is generated by [J]T[J]:

(R—y3sinyz)2 0 0

8] = (™[] = 0 @)? o |- (3.47)

This is the so-called “metric tensor,” as it describes how distances are measured in the curvilinear

coordinate system. The measurement issue will be discussed more later. For now, recall that these




are the squares of the magnitudes of the vectors a;. For example, g1; = aj-a;. Furthermore, [g]

is a diagonal matrix because the vectors a;j, are always mutually perpendicular. That is, aj-a; = 0

for i # j. A diagonal matrix consisting of the magnitudes of the basis vectors is found by simply

taking the square roots of the elements of [g], calling this new matrix® [g](1/2):

R—y?siny? 0 0 ||aa]] O
[g)/?) = 0 £ 0|=1] 0 |ag
0 0 1 0 0

The inverse of this matrix is given by

1/(R—y’siny?) 0 0 llagll 0
[g]= (/%) = 0 12 o |=| 0o 1/jas
0 0 1 0 0

Since, ji = ai/||ai||, it is apparent that

i 1/(R—y3siny?) 0 0 ay
j2 (= 0 1/ 0 as
s 0 0 1 as

0

0

llasl]

0

0

1/llas]|

Substituting the expression for {a} given by Eq (3.44) into the above yields

{i} = [e)" /P[] e},

or, defining a new matrix

31" = [gl" /21"

9The elements of this matrix are called “scale factors” (see, e.g., Saada 1989, p. 118).

(3.48)

(3.49)

(3.50)

(3.51)

(3.52a)




1/(R—y3siny?) 0 0 (R — y®siny?) cos y!

= 0 1/y 0 —y3 cos y? sin y?
0 0 1 —siny?siny!
cosy' —siny!
= | —cosy?siny® —cosy®cosy!
—siny?siny! —siny? cosy!

one may write

Gy=07 {e}.

—(R — y®siny?)sin y 0

—y° cos y? cos y! 3 sin y?
—siny? cosy! —cosy?
(3.52b)
0
sin y2 , (3.52¢)
— cos y?
(3.53)

The matrix [j] has a very useful property: it is orthonormal. That is, the transpose of the matrix

is also its inverse. This allows the inverse transform of Eq (3.53) to be written as

{e} = 11{}, (3.54)
where
cosy! —cosy’siny! —siny?siny!
[B]=| =sin y! —cosy?cosy’ —siny?cosy! | (3.55)
0 sin 2 —cosy?

~ T ~—
since [J] = [J] " from the orthonormality condition.

Now that the transformation between unit vectors has been cast in matrix form, the expres-

sions for taking derivatives of these unit vectors in curvilinear space may be formed. Again, the

curvatures to be derived describe how the orientation of a unit vector changes as it moves along a

coordinate curve (curvilinear axis). Furthermore, since vector’s direction may change arbitrarily,

the change in direction will be described in terms of its three orthogonal components resolved along

the j-basis. An example is in order.
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Figure 3.6 Change in orientation of unit vectors along a coordinate curve (axis)

Consider Figure 3.6, illustrating in a two-dimensional example how the unit vectors change
orientation along a coordinate curve (axis). In this simple example, the point A, and a point A*
located an infinitesimal distance dy? away are examined. At the bottom of the figure, it is shown
that the effect of moving along the y? axis is to rotate the unit vectors slightly clockwise. This
infinitesimal rotation is a vector quantity, denoted in the top portion of the figure as 8j3/9y®. Note
that because the rotation is infinitesimal, the direction of 8j3/8y? is parallel to the ja unit vector.
Hence the magnitude of its component in the j, direction is simply 8js/8y?-j2. This particular
curvature is called ks = 1/R,, and its geometric meaning is clear: the curvature is simply the
reciprocal of the radius of curvature and so will have units of length™. Note that js could also
rotate into or out of the page (the —j; or jy directions respectively) if the plane defined by j; and
J2 were to rotate about the y? axis when moved in the y? direction. This would connote twisting,

and the associated curvature, 8j3/dy?-j1 is denoted kgo.
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These curvatures are now formally developed. The initial curvatures of the shell reference
surface describe its undeformed shape and so are of immediate interest. As seen in the example,
they may be found by taking the derivatives of the {j} basis vectors with respect to each coordinant
direction, y*. In addition, these curvatures are used to take the derivatives necessary to develop

the strains. Using the relationships expressed by Eqns (3.53) and (3.54), one obtains

. ~T
o = o () = 5 e = 3['” G146} = (K9] 6}, (3.56)

where

8[«"]

K] = (3.57)

This is the initial curvature matriz following the notation of Pai and Nayfeh (1994b) and Pai and
Palazotto (1995a). Note that since the directions of the e-bases do not change, their derivatives
are identically zero. The entries in this matrix have the following physical meaning: the n* row of
[KQ] represents the components (in the j-basis) of 8 {j.} /9yF.
91 . 1. 9.
W'Jl W'Jz W'Ja

o) _| Giz. 0Oiz. 9Gj2,
[Kk] = 3y’° “J1 W'Jz w:}a (3.58)

s o s s
| 3 1 8y’° 2 Byk .]3_

Using the identities (see, e.g., Saada 1989, pp. 126-127)

8Jn . Ojm . a.](m)

ayk ‘Jm = — Byk *Jn, — 0, (359)
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where the parentheses suspend the summing convention, the curvature matrix of Eq (3.58) may be

written as ) }
9jz . 9js .
9j2 . Ojs .
K9 = | 22, 0 _ A3 3.60
[ k] 3yk J1 3yk J2 ( )
djs djs .
L R 0
| 8y J1 ByF J2 |

For the present curvilinear coordinate system (the circular torus) has the following curvature ma-

trices. ) 3
0 cosy? siny?
K3 =] —cosy? 0 o |, (3.61a)
—sin y? 0 0 |
and
0 0 ©
K =|0 0 —1|- (3.61b)
01 0

The matrix [Kg] is identically zero, since j3 is rectilinear and normal to the undeformed shell
surface. These curvatures correspond to the “rate of change of unit vectors” described by Saada
(1989) on pages 128 and 129. But because of the particular choice of curvilinear coordinates,
these “curvatures” do not have the units expected (length_l). While each of the three Cartesian
coordinates 1, £3, and z3 expresses a length, two of the curvilinear coordinates, y; and y,, are
angles. This has led to the inconsistent units. The “rates of change” described by Eqns (3.61)
are mathematically correct, but are not useful in their current form. Recall the metric tensor of
Eq (3.47). This tensor will now be used to make the units dimensionally consistent, thus making

the curvature quantities physically meaningful.
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This is done by multiplying the curvatures by the reciprocals of their appropriate scale factor.

The scale factors, h;, are the elements of the matrix [g](1/?) of Eq (3.48). That is

h1 0 0 ||a1|| 0 0
P =@"=| 0 h o0 |=| 0 Jag o | (3.62)
0 0 hs 0 0 |las]

So to get the dimensionally consistent, or “physical,” curvature matrices, [Kg] Py each of

the curvature matrices is multiplied by the reciprocal of its scale factor:
[KR] 5y = (1/hry) (K] - (3.63)

The means are now available to write the derivatives of the unit bases vectors in a very concise

matrix form:

i i

9 . 0 .
aF | d2 [ = Kkl | iz (3.64)

Js Js

Following the notation of Pai et al. (1993}, the entries of these matrices are given by

0 K —k? 0 kY —kY,
K py=| -k 0 k% |+ [KSlpy=| -k 0o —k¢ |, (3.65)
B k3, o kQ, k3 0




For the circular torus, the curvature matrices are

[ 0 cos y? sin y? ]
(R—y3siny?) (R-—y3siny?)
2
0] _ cos Y
[K] —— —m 0 0 b (3.66&)
sin y? 0 0
[ (R—y3siny?) -
and
0 0 0
1
[K=]0 o —-= |. (3.66b)
y .
1
0 y_3 0

For example, the derivative of j; with respect to y! is given by 8j1/dy' = k%js — kjs. In future

calculations using the curvature matrices, the (P) subscript is dropped.

3.3 Characterization of Reference Surface Behavior

The kinematics of an infinitesimal element of area on the reference surface may now be
described in terms of the curvilinear coordinate system. For ease of notation, the superscript

notation of the previous section will be dropped. Furthermore, the notation

v v*, ¥*Y ={=, 9, 2} (3.67)

shall be used.

Consider Figure 3.7, showing an element of the reference surface before and after its move-
ment, which consists of both rigid body translation/rotation and deformation. The zyz system
is the curvilinear coordinate system, and the displacements u, v, and w are the orthogonal (and
rectilinear) displacements in the ji, jz, and js directions, respectively. The axes ¢ and # represent

the deformed z and y axes, respectively; and v = 761 + 762 is the in-plane shear deformation.

3-24




undeformed B X

Figure 3.7 Infinitesimal element undergoing deformation (after Pai and Palazotto 1995a)
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(More precisely, this “shear” is the change in angle between two originally mutually perpendicular
infinitesimal lengths.) The unit vectors i; and i; are along the é and 7 axes, respectively. Axes
¢ and 7 coincide with the axes ¢ and 7 only if the in-plane shear deformation vg is zero. Note
that a significant simplification would occur if the interest were in beams rather than shells. In
the beam, in-plane shear would be neglected, and the following development would be significantly
simpler: one would not have to be concerned with finding the {i123} basis from the {ij53} basis,
where {ij33} = {iz, i3, i3}.

In Figure 3.7, the right angle formed by CAB is (in the general case) changed as the ivnﬁni.tes-
imal region deforms to C'A’B’. The displacement vector associated with point A is denoted D,
where D = uj; + vjs + wjs. Treating the sides of the undeformed infinitesimal area as vectors,
they may be written as AB and AC. Then the displacement vector D is used to generate the sides

of the area after movement as

oD D
! — ey —
A'B'=AB + 2 dz, A'C =AC+ By dy. (3.68)

But since AB = dz j; and AC = dyj2, one obtains

oD oD
A'B' =dzj —d A'C' =dyj —dy. .
zj1+ 5 ~da, dyjz + 5 dy (3.69)
Using the curvature matrices of Eq (3.65), one obtains
9j djz | 0is

L2 pwl | de

A/B/:d . I- x- .
T+ |UzJ1+ V)2 +We)s+u E 52 p

=deji+ (s + vz + wejs +u (kdjz — kY is) + v (—k2j1 — k2, ja)
+w (kD j1 + kS, j2)] de
= [(1 + Uy — vk +wkd)j1 + (v,e +ukg+wk21)j2 +(wgs — uk?—vkgl)j:;] dz

(3.70)
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In the same way,

. . . ., 01 8j2 Ois
T —_— —— _
A'C' =dyjz + [u,y.]1+v,y_]2+w,y_]3+uay +v By +w8y dy
=dyji+ [ugdi+vyda+wyis +u (k3jz — kdds) + v (=kj1 — k3 is)
+w (k§pd1 + k3 32)] dy

= [(uy — vk +wkgy) s+ (14 vy +uk+wkd)ja + (wy — ukgy — vkJ)js] dy(3.71)

Note that these two vectors A’B’ and A’C’ are the lattice vectors described in Section 3.1.1. The
axial stretching e; and e, (along £ and 77) is defined by using the familiar concept of the fiber length

change divided by its original length.

|A'B'[| - dz [A'C']| — dy
e = —— ey =

iz , dy , (3.72)
where
||A'B’|| = VA'B’-A’B, ||A'C’|| = VA'C'-A’C, (3.73)
such that

e1 = \/(1 +us— vkl +wkd)?+ (v +ukd+wkd)? + (we —ukd —vkd)2—1 (3.74a)

er = \/(u,y —vk§+wkdH)? +(1+vy +ukd+wkd)? + (wy — ukd, — vk3)2 — 1. (3.74b)

These quantities e; and ey represent the stretching of the lattice vectors. As an aside, these

quantities are related to the Green strain measure, L,,,, as

AIB/2_d2 Alcl?_d2
|ABP—de® L ACE - dy 5.15

2011 =
1 dz? ’ dy? ’
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The unit vectors along the £ and # directions are given by:

A'C

A'B’ .
= ———
27 (L+e)dy

= ST = Th1 j1 + Toz jo + Thajs, (3.76
e (1+e1)dz 91J1 + To2 jo + Tozjs, (3.76)

= Tlljl + Tujz + T13j3,

where the T}; are given by

X 14wy, —vkd +wkd . v+ ukd +wkd . w g, — ukd — vkd;
T — ) , T -— s T = 2 3‘77
11 1T e, 12 T+e 13 T+ e (3.77a)
A uy — vk +wkd, - 14+, +ukd+wkd - wy — ukd, — vkd
= - = : Thg = — 3.77b
Tzl 1 T e s T22 1 e, y £23 1 + PR ( )

Careful inspection of Eqns (3.74) and (3.77) reveals a physical insight into the meaning of the T};:
they represent the derivatives of the two stretches, e; and es, with respect to the derivatives of the

components of displacement. That is,

o 861 o 861 - 361 ES 882 S 882 o 862
Ty = Tiog = = — = —, Tos = -—, Tog = 3.78
i1 Bu,’ 12 Buy’ 13 Fu,’ 21 du, 22 Bv, 23 Buw, (3.78)
Since i-15 = cos(ij, 13), one finds
Y6 = g - COS—l(ii'iﬁ) = Sin_l(ii'ii). (3.79)

So, using Eqns (3.76) and (3.79), an expression for the total in-plane change in angle between two

originally perpendicular infinitesimal lengths is obtained:
e = Ye1 + Y2 = sin (T11To1 + T12To0 + T13T0s) (3.80)

Thus, 76 is expressed in terms of u, v, w, and the initial curvatures, which arise from taking
derivatives of D with respect to the curvilinear coordinate system. A theorem from the polar

decomposition technique allows unique expressions for v5; and g2 to be determined. Recall from
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x, X

Figure 3.8 Superimposition of deformed element A’ B'C’ onto undeformed element ABC

Section 3.1.1 that the deformation gradient tensor, [F], to be written as [F] = [R][U], where [R] is
an orthogonal rotation matrix, and [U] is a symmetric stretch tensor. For the current formulation,
[U] is given by:
(I14+e1)cosver (1+e2)sinyes O
[U] = (1+e1)sinyer (L+e2)cosygz O |- (3.81)
0 0 1
The derivation of Eq (3.81) is the subject of an entire paper (Pai and Palazotto 1995b), but a
simple illustration gives some insight into the origin of this tensor. Figure 3.8 shows the deformed
element superimposed over its undeformed counterpart. This is equivalent to removing the effects
of rigid body rotation and translation. Consider the displacement of a point originally located at
(2,y). From the geometrical relationships depicted in Figure 3.8, one finds the final location of the

point (z*,y*) as

¢ = (x/2)(1+ e1)Z cosve1 + (y/§)(1 + e2)Fsin vea (3.82a)

¥ = (2/Z)(1 + e1)Zsinyer + (y/§)(1 + €2)F cos vsa. (3.82b)
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The deformation gradient tensor of this transformation is given by

dz*[0x Ox* /By (1+e1)cosver (14 e2)sinvyez
[F] = = (3.83)

dy* [0z Oy*/dy (L+e1)sinyer (14 ez2)cos ez

Since rigid body rotation has been removed in the illustration, the rotation matrix is simply the

identity matrix:

1 0
[R] = . (3.84)
01
So one obtains
[F] = [R][U] = [U]. (3.85)

As stated earlier, a fundamental principle of singular value decomposition {(of which polar decom-
position is a special case) is that the tensor [U] is symmetric!® So, by enforcing the symmetry of
Eq (3.81), one finds

(14 e1)sinye1 = (1 + e2) sin7ysa. (3.86)

As an aside, the Jaumann strain associated with in-plane shear (at the reference surface), Biz, will

be developed later and shown to be

2B12 = (1 + €1) sinve1 + (1 + e2) sin vs2. (3.87)

As an aside, this equation may be developed from Eq (3.81) purely from the geometric considera-
tions of Figure 3.8 without knowledge of the symmetry of [U]. This may be done in the manner

presented by Atluri (1984), where the symmetry of a new tensor, [r], is forced from the Biot-Luré!!

10Furthermore, if [F] is invertible (which it is for an admissible transformation) then [U] is positive definite (see
Strang 1988, p. 445).

11The Biot-Luré stress tensor is defined as [r*] = [S][U], where [S] is the second-Piola Kirchhoff stress tensor and
[U] is the right stretch tensor (Atluri 1984). In general, the Biot-Luré stress tensor is unsymmetric.
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stress tensor, [r*], through:

[r] = 5 ('] + 17, (3.88)

[N R

where [r] will, by construction, be symmetric'2. This method could likewise be applied to Eq (3.83)

(with rigid rotations removed), yielding Eq (3.87).

Now getting back to the original goal of finding unique expressions for the two values of in-
plane shear rotation, Eq (3.80) and Eq (3.86) are simultaneously solved, yielding the values for v

and ve2 as follows.

(14 e1)sinye1 = (1 + e2)sin ez (3.89a)

(1+e1)sinye1 = (1 + e2)sin(ys — Y61)- (3.89b)
But since sin(e — §) = sin & cos # — cos « sin 3, one finds

(1+ e1)sinvyg; = (1 + e3)(sinvs cosys1 — cosyssinygr)  (3.89¢)

(14 e1)sinye1 + (1 + e2) cos s sinyg1 = (1 + e2) sin 6 cos ¥e1 . (3.89d)

Now, dividing by cosve1 and collecting terms yields

(14 e1)tanve1 + (1 + e2) cosye tanye1 = (1 + e2)sin s (3.8%)
[(1+e1)+ (1+ea)cosvysltanyer = (1 + e2)sinve (3.89f)

(14 ez)sinvg

tan = 3.89

o1 (14+e€1)+ (1 + e3)cosvs ( g)

_ sin g
vo1 = tan™! | ————— (3.89h)

B oo

12 Atluri notes that the tensor [r] is sometimes referred to as the Jaumann stress tensor, citing Fraeijs de Veubeke
(1972) and Atluri and Murakawa (1977). The tensor [r] thus described is, in fact, the Jaumann stress tensor [J]
referred to herein (Pai and Palazotto 1995b).
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The derivation for vs2 is analogous so, in summary:

sin v sin ve
tanysy = | |, tanygs = | — (3.90)
L——l(ii::) + cos s u(ii:) + cos ¥e
The unit vector normal to the deformed reference surface is found using Eqns (3.76):
ig = is = ii X ii — T12T23 — T13T22 j14 T13T21 — TnTzs jo + TuTzz — T12T21 ja, or
7 Il x g Ro Ro Rq ’
i3 = T51j1+ Ts52j2 + T33 )3 ' (3.91)
where the T3; are found to be
T3y = (T12Ts — T1aThs)/ Ro (3.92a)
T32 = (T13T21 - T11T23)/R0 (3.92b)
Ts3 = (T11Th2 — Th2To1)/ Ro (3.92¢)

Ry = \/(T12T23 — ThaTy9)? + (TiaTo1 — Ti1To3)? + (Ty1Tas — TiaTh1)? =] cosvs | (3.92d)

The undeformed coordinate system zyz is related to the orthogonal coordinate system £n( at the

deformed location (Figure 3.9) using Eqns (3.76) and (3.91). Given

{izs3} = [T1{j12s} and {i1os} = [[){izs3}, (3.93a)

one obtains

{i123} = [T)[T){j123} = [T){j123}, . (3.93b)
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Deformed

System { j 12 }

Figure 3.9 Transformation of infinitesimal shell element
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where

€oS Y62
- 1
T] = [T}T] = — s
(1) = 0108 = = | ~sine
0

— sin ¥e1
cos Ye1

0

0

COS Y6

Tll

Ty

Ta1

Ty Tis
Ty Tas
T3y T33

and {ij35} = {i;, i3, is}7. Expanding the matrix equation of Eq (3.93c) yields

. . COS Y62 Tu sin ve1 TZI . COS Y62 Tm sin vg1 Tzz
11 =1 - + J2 -

oS Y6 €OS g oS 7s cos Y

cos ve2 Ti3 _ sinvyey Ths

coS Y oS 76
i =i [ _Sin7e Tyy | cosyer T + __sin ez Tip | cosyer Tha
2=0 oS Y6 coS Y6 2 oS ¥s €OS Y6
+ia [ - sinye2 Tis . cosYe1 Tha
J3 oS ¥s oS Vg

i3 = j1 51 +j2 Ts2 + j3 Tss.

T = (
cos 76
T2 = (
cos 76
T3 = (
cos 76
TIn = (
cos 76
Ty = (
CcoSs ’)’6
To3 = (
oS 76

12 in Ys + Th cos 761)

13 sin ve2 + Tz3 cos ’!61)

11 €08 Y6 — D51 sin 761)
12 €08 Y3 — Tha sin ‘)’61)

13 €08 Y2 — T3 sin ”7’61)

11510 Y62 + D51 COS"{Gl)

)

1

(3.93¢)

(3.94a)

(3.94b)

(3.94¢)

(3.952)
(3.95b)
(3.95¢)
(3.95d)
(3.95¢)

(3.95f)

(Recall that that T are given by Eq 3.92.) Note that this approach could be called “corota-

tional,”
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Figure 3.10 Deformation associated with displacement field of Eqns (3.96)

its deformation (according to Belytschko and Glaum 1979, corotational finite element formulations
for straight beams were first presented by Argyris et al. 1964). But “corotational” often implies
updating the reference configuration, which is not done—all deformation is referred back td the
original undeformed configuration. So, in contrast to such updated-Lagrangian schemes in which
the original configuration is discarded in favor of the most recent deformed configuration, in the
present scheme the original configuration is not lost. Moreover, the transformation afforded by
[T] in the current theory is more exact than, say, the “ghost” reference (corotational) frame of
Bergan (1981, 1984), since in the current formulation the unique angles v¢; and g2 are found via
polar (multiplicative) decomposition of the deformation gradient tensor. In the “ghost” reference
frame, the corotated frame represents an “average” rotation of the initial (total-Lagrangian) or

current (updated-Lagrangian) configuration (Nygard and Bergan 1989).

As a simple example illustrating the implementation of this transformation, consider the case

of pure shear (Figure 3.10), where the displacement field is of the form

X(z,y,2) =z+ky, Y(z,y,2)=y, and Z(z,y,z2)=z, (3.96)
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where k is a constant. This leads to the following:

u=X—-z=ky, v=Y—-y=0, 2=Z2-2=0 (3.97a)

uy=k, ug=u,=0, v;=w;=0°foralli (3.97b)

From Eqns (3.74) and Eqns (3.77) one obtains

e1 =0, es=vVkZ2+1, TM: 1, T21=k/\/k2+1, (3.98&)
Tos =1/Vk2+1, Ts3=1, and all other Tj; = 0. (3.98b)

From Eq (3.80) it is evident that sinys = k/vk? + 1 and cosv¢ = 1/v/k? 4+ 1. Using Eq (3.90) and

the identities

sin 3 = tan 8/4/1-+tan? B, cosfB =1/4/1+tan?p , (3.99)
yields
sinye; = k/Vk? + 4, cosve1 = 2/Vk2+4 (3.100a)

sinyez = k/\/ (k2 + (k2 +4),  cosyer = (k2 +2)/\/(k2 + )(kZ+4).  (3.100b)

Substituting these values into Eq (3.93c) yields

k2+2 —kvk2+1 0 1 0 0
. 1
(T] = [T}[T] = Joa| k2RI 0 E/VEZ+1 1/VEZ+1 0
0 0 VE2+4 0 0 1
(3.101a)

3-36




or

[T] = E 2 0 (3.101b)

0 0 k?+4

It can be shown that this matrix, [T], is an orthogonal rotation matrix:

[T)T[T] = (3.102)

|
e
M
q
W~
£
o
=
e
[\
q‘
A~
aﬂ
X
o

1 00
=010
0 0 1

As was done for taking derivatives of the unit vectors forming the basis for the coordinate sys-
tem describing the undeformed configuration, the j-frame, one may now set out to define curvature
matrices for the unit vectors:of the coordinate system associated with the deformed configuration,

the i-frame. Using Eqns (3.93b) and (3.66) and the identities

6i(j) . 6i(j) . aij . 3ik . 3ij . _' 3ik . .
W.l(“ = 8y 1) = 0 , 7'1]‘; = —"5;'1] y gg'lk = —%'lj for j,k = 1,2,3 (3103)

where parentheses suspend the summing convention, one may develop expressions for the derivatives

of the i-frame unit vectors just as was done for the j-frame vectors. Beginning with

{iz2s} = [T|{j12s}, (3.104)
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where i123 = {i1, i2, i3} and ji2s = {j1, j2, ja}~, the derivative (for the z-coordinate direction)

may be expressed as

2 firzs) = o (Tirzs))
a[ ]{.]1 s} + [T]a{'”x”} (3.105)
Substituting Eq (3.64) for 8{j123}/0z yields
%{ilﬂi} = %{jms} + [T][K3{j123}. ' (3.106)
Noting from Eq (3.93b) that
{d128} = [T]™ {i12a}, (3.107)
it is evident that
——{1123} B [ ][T]—l{llza} + [T][Ko][T]—l{1123}. (3108)

The matrix [T] is orthonormal (Pai and Palazotto 1995b), that is, [T]T = [T]~!, leading to

- tiaa} = (o] + (TS o). (3.109)

This expression leads to a new curvature matrix, [K], describing the curvatures associated with the

deformed body:

9 .. . O[T] -t 077 T

g Ui2s} = [Kal{iiza},  where [Ki] = ——=[T]" + [T][K4][T]". (3.110)
Likewise, for derivatives in the other in-plane coordinate,

3[T]

gy = [aliuzs),  where (K] = 2L e + [T (3.111)
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The deformed curvature matrices [K;] and [Kz] may be written in the same manner as was

Eq (3.66):

[Kl] = —ks

ks —k
0 -—k61 ’
k61 0

where the elements of these matrices are

By
e
diz
dy
Biz
bz
diy
By
o

kl =—

kz =—

kﬁl =—

k'sz =

k5 E—l'iz = Tlm,z‘ TZm — T31k(6)1 + TSZk? + T33k(5)

oz
01y

4 =5

iz = —Tim,z Tom — To1kQy + Took? + Tosk

[K2]

0 k4
—ky O
keo ko

—ks2

—ko

0
5

iz = —Tom,y Tsm + Ti1kS — Tiokas — Ti3k]

i3 = —Tom,z Tom + Tu1kd; — Ti2k? — Tisk?

g = —~Tim,y Tsm — To1ks + Tookdy + Tosk)

” i = —Tomy Tim — Ts1ks + Taakdy + Tasks,

(3.112)

(3.113a)
(3.113b)
(3.113¢)
(3.113d)
(3.113¢)

(3.113f)

where the repeated subscripts employ the well known tensor summation convention such that, for

example

Tim,z T3m = T11,6 T31 + T12,0 T32 + Tlé,x T3s.

(3.114)

It is noted that these curvatures are not, in general, the “real” deformed curvatures for two reasons

(Pai and Palazotto 1995a): (1) the deformed dz (dy) is along the i; (i;) direction, not along the i;

(i) direction (since the in-plane shear is nonzero), and (2) differentiation of the local unit vectors

has been taken with respect to the undeformed lengths dz and dy rather than the deformed lengths

(1+ e1)dz and (1 + e3)dy.
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3.4 Strain-Displacement Relations

Having characterized the behavior of the reference surface, attention may now be turned to-
ward generalizing the displacements to three-dimensions. This is necessary to describe the behavior

of material points not located on the reference surface.

In this development, the concept of a “local displacement field” is used (Pai and Nayfeh
1991). Consider a displacement vector, u, associated with a particular material point A located by
a position vector, P(A) (Figure 3.11). In the infinitesimal region surrounding point A4, consider
the vector displacement field, u(P). The derivatives of this displacement field will yield the strain
field, as will the derivative of any displacement field that differs from u(P) by a constant. If this

constant is chosen to be —u(P(A)), a new displacement field is generated:

4(P) = u—u(P(A)) (3.115)

such that the displacement at point A, in this new displacement field, is now zero. In doing
this, the derivatives of the displacements, which give rise to the strains, are unchanged (since this
new displacement field differs from the previous one by only a constant). In a layered composite
consisting of N layers (Figure 3.12), the local displacement vector (with respect to the local &n¢
coordinate system of Figure 3.7) as presented by Pai and Palazotto (1995a) and based upon the work

of Bhimaraddi (1984), Reddy and Liu (1985), and (Kovaiik 1980) is defined as (see Figure 3.13)

u=ui; + iy + uPis (3.116)

where

o) = wd(z, ) + 2[02(x, v) — 03(z, )] + 752 + {2, y)2? + B (2, y) 23

4 = w3z, ) — 201z, 9) - 032, Y)] + 14z + o (2, 1)2% + B (=, 1)2°
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du(P) _ dii(P)
dx? dxt

4(P) =u(P) - u,

Figure 3.11 Displacement field in the vicinity of point A

“‘top”’ surface

“‘bottom’’ surface 2

Figure 3.12 A layered composite of N layers indicating ply numbering scheme and interface co-
ordinates, z;
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(i) (i)
d=Vsz+0,2°+B, 2

deformed Y

Figure 3.13 Shear warping in a layered composite

uf) = ud(z,9) + of (2, v)z + B (2, y)2? (3.117)

Here, u? (j =1, 2, 3) are the components of displacement (with respect to the local coordinate
system €n¢) of a point which is located on the reference surface at (z, y) before deformation. The
rigid body rotations and shear rotations are given by # and 7 respectively. In Figure 3.14, these
anglés are graphically depicted in the zz plane. Referring to Figure 3.14(a), the angle between the
transverse coordinate (z) and the normal to the reference surface in the undeformed configuration
as measured in the zz plane is given by 69. The corresponding angle in the yz plane (not shown)
is given by —63 (the minus sign arises in employing the right-hand rule for rotation about the
z-axis). The shear rotation angle in the zz plane at the reference surface is denoted +s, and
represents the rotation of the normal to the reference surface due to transverse shear deformation.
The corresponding angle in the yz plane is 74 (the rotation direction for y4 is chosen such that

a positive value of y4 gives positive displacement for points above the reference surface hence,
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*(b)

Figure 3.14 Rigid rotations and shear rotations in an originally undeformed parallelogram; (a)
rigid rotation without shear rotation; (b) rigid rotation with shear rotation

unlike 85, its sign remains positive). At this point, having described the displacements u;-) and the
rotations 0?, 0;, and v;, the ingredients are present for the so-called Reissner-Mindlin kinematic
(see Reissner 1945, 1947, Mindlin 1951): normals to the reference surface may rotate due to shear,
but must remain straight and of unchanged length. As mentioned in Chapter II, this assumption
is inappropriate when dealing with laminated composites. A means is needed of including warping

and stretching of the normal. For this the remaining terms of Eq (3.117) are used.

These terms, the ag) and ,B,(f), are referred to as shear warping and thickness stretch functions.
These functions are used to describe the kinematic behavior, beyond simple rotation of the rigid
normal, of the material away from the reference surface, and allow coupling of the displacements
ugi) and ugi) via the shear angles at the reference surface. That is, 74 can affect displacement

u(li) through the warping functions and, likewise, v5 can affect ugi). The functions are developed

in Section 3.6. By defining the shear warping functions, G; and Gs, and the thickness stretch
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function, Gg as

Gi=vsz+ ozgi)z2 + ﬂgi)zs, Gy = vaz + agi)z2 + ,Bzi)z?’, and G3 = agi)z + ﬂgi)zz, (3.118)

the kinematics of Eq (3.117) may be written as

uf?) = ui(e,9) + 2[02(2,9) - 032, )] + G
uy) = u(e,y) - 2[01(2,9) - 09(2, 9)] + G

ug) = u(z,y) + G3 (3.119)

Conspicuous by their absence in Eqns (3.117) are the (1 + z/R) terms associated with shell
kinematics. These are the terms that account for the fact that, along a coordinate curve, normals
separated by a finite distance are, in general, not parallel. The kinematics of Eq (3.117) neglect
the “trapezoidal cross-section” effect, and hence are not “true” shell kinematics (see Figure 3.15).
The differential length subtended by a differential angle df changes with the thickness coordinate.
This change in length is neglected in the analysis. While greatly simplifying the formulation, this

does introduce an error. The error can be calculated as

__ (R+8)d0—Rdf
- Rd6

= 6/R, (3.120)

Where 6 = max {| zv+1 |, | 21 |} is the maximum distance of a fiber from the reference surface
and R is the radius to the reference surface. Clearly, thick, deep shells will suffer the most error.
Also note that while the kinematics for u; and us are cubic in the thickness coordinate, they are

quadratic for us.
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Reference
Surface

Assumption: (R+z) d6 = R d@

Figure 3.15 Trapezoidal cross-section effect

Note that by choosing a local displacement field (as shown in Figure 3.11) one always has

[l =}

(3.121a)

1l
I
vo
1l
I
wo
1l
o

Furthermore, by choosing the in-plane coordinates to lie in the undeformed reference surface, one
finds

09 = 65 =0, (3.121b)

that is, the normal to the undeformed reference surface corresponds to the z-axis. Likewise, note
that the curvilinear coordinate system associated with the deformed reference surface (Figure 3.7),
denoted by the i-basis, has a similar characteristic: the normal to the deformed reference surface,

by definition, corresponds to the { axis, hence

01 = 92 =0. (3.121(!)
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%
o| e
(3]
2
Sﬁ @ ) (1+€,)dx sinY.
< — / 1 10 1,
N B .
up=04__ & B | *
u? =0 (1+€,)dx cosY,,

Figure 3.16 In-plane deformations relating to derivatives of displacement components

Finally, since the new i-basis is tangent to the deformed reference surface, it is evident that
du3/8z = Bu3/dy = 0. (3.121d)

Differentiation of the kinematics of Eq (3.119) with respect to the global coordinates gives rise
to the Jaumann strains for the ith layer. First consider the in-plane deformations. In Figure 3.16
two originally mutually perpendicular infinitesimal lengths joined at point A, located at (o, yo)
are again considered. Now observe the displacements associated with point B, located at (dz, yo).

The final « location of this point, denoted as z’, may be expressed analytically as

' =20 +dz+ gﬁdx | (3.122)
- or ' ' .
or geometrically, from the figure, as
z' = 20+ (14 e1)dz cos ¥e;1. (3.123)
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Equating the two expressions leads to

ou?
e (1+e1)cosver — 1. (3.124)

Similarly, the final y location of the point, denoted ¥/, is seen to be

8u? .
Y =w+ %d-’ﬂ = yo + (1 + e1)dz sinye1, (3.125)
which leads to
3ug .
PERY . 3.126
(+e)ds 06 (3.126)

Similar expressions are easily developed for point C, which moves during deformation to point C*.

The derivatives of the rotations of the normals, 87 and 6;, are seen to be identical to the
curvatures as follows. In the inset of Figure 3.16, the infinitesimal rotation of the normal in moving
from point A to point A’ on the z axis in the zz plane is observed. The rate of change of this
normal, 869 /9z (or 80, /0z in the deformed configuration) is simply the reciprocal of the radius of
curvature for the z (£) axis:

863 80,

—% =0 - = k1. .
% ki, and % ky (3.127)

The other derivatives have similar definitions. To summarize, the derivatives associated with the

components of the displacement vector {u} are given by

ul . oul .
m = 8sin ve] , m = 8l Y62 (31283;)
u? ud
—(ﬁ:(l—l—el)cos'ysl—l , —51-;—2—:(1+ez)c0s762—1 (3.128Db)
69 91 . 869 a6? 863
8_; = —i‘.la = k? ) 3_; =~k , 'ﬁ = —kg1 —55- = k3, (3.128¢)
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.8_0_2__ 8i1.'— %:_ %:_ %— (3128d)

Like their undeformed counterparts, the curvatures ks; and kegy are the curvatures describing the
“twisting” of the normal about the & and y axes respectively with respect to the deformed geometry.

For example, kg describes the rotation of the normal about the  axis as one moves along that (z)
axis.
Substituting the expressions of Eqns (3.128) into Eq (3.119) yields the derivatives of the

displacement vector u with respect to z, y, and z:

du 8u1 +_8i‘3 +8 + o, 4 812+ 8£

p i e A TR R i
=[(1+e1)cosve1 — 1 + z(k1 — k9) + G1,- — ksGa + k1G3lix
+[(1 + 61) sin ve1 + 2(’(761 - k‘gl) + Gg’z + k5G1 + ksng]iz

+[G3,z — k1G1 — ke1Golis, (3.129a)

a_u—%i_}_%i_Fau + +u3i2+ %
3y oy 1Ty 2t gy “13 28y T "oy

:[(1 + 62) sin ve2 + z(lc62 — ](762) + Gl,y — k4Gy + k62G3]i1

+[(1 + e2) cos yg2 — 1 + z(k2 — k9) + Ga,y + kaG1 + k2G3lia

+[Gs,y — ke2G1 — k2Golis, (3.129b)
Ou Ouy, . Ouy.,  Ou
oz 3—;11 + EP i+ 8—313 = Gi,2i1 + Ga iz + G .3, (3.129c¢)

So from Eq (3.128)-(3.129c¢), the Jaumann strains B,,, are

1/ 6u . ou .
Bnn —-5 (3:27"7' 1p + ""“'azn"lm) (3130&)
B® 9, = (1+e1)cosver — 1 + z(k1 — k) + Gy o — ksGa + k1 G (3.130b)
11 Tz 1 61 1 1 1,z 5G2 1G3 .
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Bgz) :—y'iz = (1 -+ 82) cosyez — 1+ 2(k2 —_ k’g) + Ggyy + k4G1 + koG3

BS) :—z'is = Gs,;

)y ou, Ou,
2B =5 s + 5, ia = Gz — keaGr — kaGa + Gy
) Ou, Ou,
2B§3) :_2,13 + —u-11 = Gl,z —kiGy — ka1 G2+ Gs,x
oz 0z ~
i 811 . u .,
2B](_2) :a'lz + -6—!/—-11

=(1+ e;)sinye1 + (1 + ea) sin 52 + 2(ks — k)

+G1y + Goz + k5G1 — kaGa + keG3
——

where ks = ko1 + ko2 and k3 = k3, + kQ,.

(3.130¢)
(3.130d)
(3.130e)

(3.130f)

(3.130g)

At this point, a simplification suggested by Pai and Palazotto (1995a) is performed: because

G3, the stretch in the thickness direction, is usually small, especially for thin shells!®, one may

neglect G3 and its derivatives in all strain-displacement expressions ezcept in that of the direct

normal strain, ng) This is based upon the claim that the effect of transverse normal strain on

the in-plane strains is negligible. So the strain-displacement relations of Eq (3.130) are re-written,

eliminating the terms marked with an underbrace.

5y ou,
Bg‘l) =5, = (1+e1)cosvyer — 1+ z(ky — k’(1)) + G1z — ksG
B(,:) __(')u s k k,O k
{8 __8_y.12 = (14 e2)cosve2 — 1+ z(ka — k3) + G2y + kaGy
N ou v
B =7, s = G,
jy Ou, Ou,
2B§‘3) :8—y-13 + 5, 2= Ga,, — ke2G1 — k2Ga
f Ju . ou .
238 =5, s + o, = Gi1,: — k1G1 — ka1 G
2B§i2) :a—u'iz + a—u'il

oz Sy

=(1+ e1)sinve; + (1 + e2) sin yg2 + z(ks — k2)

(3.131a)
(3.131b)
(3.131c)
(3.131d)

(3.131e)

13The impact of not simplifying the equations is discussed further in Chapter VII where thick shells (tires) are

considered.
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+ Gy + G0 + ksG1 — kaGo (3.131f)

where, again, ks = ke1 + ko2 and kQ = k3, + k2,.

Though trapezoidal cross-section effect has been neglected in these kinematics, the z/R-like
terms of shell kinematics are present in these equations, arising from taking derivatives of the
rotation angles 67 (recall the inset of Figure 3.16). For example, the By, strain contains the term
—2z kS, which is, for the cylindrical shell, just —z/R,, where Rj is a shell radius. The appearance
of these terms is another by-product of referring displacement derivatives to the global coordinate

system, i.e., the total Lagrangian approach.

Before moving on to the development of the constitutive relations, the earlier numerical
example is now used to compare the results of the current description of mid-surface behavior to
that using the theory of Pai and Palazotto. Using the equations for e; and es from the theory

(Eq 3.74) with all initial curvatures k? = 0, it is seen that

AR~ de
1= dz
:\/(1 Fug)? + o2 +wl -1 (3.132a)
|A’C|| — dy
ey =" —>
dy
=y/ud +(1+vy)? +wy -1, (3.132b)

and e; = 1.0 and e5 = /5. The expressions for the Jaumann strains at the reference surface (z=0)

are given by

i du ,
Bgl) :5:;_1..11 = (1 + 81) cosver — 1
(3.133a)
5y Ou .,
ng) :a_.lz = (1 + 62) CO8 Y62 — 1
T2
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OFL UL

=(1+ e1)sinys1 + (1 + ez) sin ¥62

Substituting the values of e1, €3, 761, and sz into the above leads to

0.94029  0.485071
[B] =

0.485071 1.18282

where the 761 and g2 were found through the relationships

o1 + Ye2 = sin~ ' (ig-i3)

(1 +e1)sinvysy = (1 + ez)sinver

which is exactly the result of the polar decomposition formulation.

3.5 Constitutive Relations

(3.133b)

(3.133¢)

(3.134)

(3.135)

(3.136)

Having developed the relationships between the local displacements and the strains, the con-

stitutive relations are now developed. These are the relationships between the strains and the

stresses produced by them. As mentioned in Chapter II, the current analysis treats all materials

as perfectly elastic over their entire range of deformation. That is, there is a linear relationship

between strains and stresses regardless of the magnitudes of either. The kinematics developed in

the last section do not explicitly limit the current theory to small strains, but prudence dictates

that results are always interpreted in the light of what is known about the behavior of the material

under study. In assessing the finite element results based on this theory, questions to consider

would include: (1) Over what range of strains/stresses is the material elastic? (2) When the ma-
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load

(a)

(b)

Figure 3.17 Change in orientation of fibers during deformation; (a) angle-ply laminate before
deformation, (b) after deformation

terial becomes inelastic, are the changes in properties slight or dramatic? (3) When and how does

the material fail?

To characterize a laminated composite made of transversely isotropic (sometimes called spe-
cially orthotropic or cross anisotropic) plys, well known tensor transformations are used (Whitney
1987) to obtain the transformed stiffness matrix [Q(i)] for the i*" lamina (see Figure 3.12) from
its principal stiffness matrix [Q(i)] and its ply angle, which is measured with respect to the = axis.
Note that in this theoretical development, changes in the relative fiber orientations from ply-to-ply
due to deformation are neglected. That is, under the assumption of a perfect interply bond, the
deformation cannot cause the relative angle between fibers in, for example, the i*® ply, to change
their orientation relative to the fibers of the i — 15 or i + 15¢ p]ies. In actuality, such orientation
changes do take place, as illustrated in Figure 3.17. In the figure, a two-ply laminated composite is

depicted. The “top” ply has fibers originally oriented 45° to the z-axis, while the “bottom” ply has

fibers oriented at —45° (the fibers of this ply are depicted as dashed lines). During deformation,
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a “scissoring” of the fibers takes place due to the stretching of the material in the z-direction. In
the current formulation, such chaﬁges in orientation are not accounted for. To account for such
deformation would require tlracing the in-plane deformation at each location (in z, y, and z), and
recalculating the constitutive relations based on any changes in the orientations. In large strain
analyses using a Green’s strain total-Lagrangian approach, such as that of Schimmels and Pala-
zotto (1994), expensive transformations of material and constitutive frames-of-reference are used

to follow global changes of fiber orientations.

A transversely isotropic material can be described in terms of five independent elastic con-

stants:

Ey1, FEyy=FE3z3, Gazorve, Giz=G13, viz=nas. (3.137)
The quantities G and vy3 are related by (Whitney 1987, p. 11):

Eo3

Gz = ———,
23 2 (1 + V23)

(3.138)

so either, but not both, may be specified.

The relationship between the Jaumann stresses, Jp,, and the Jaumann (or Biot-Cauchy
Jaumann) strains, By, for the i*! lamina of a transversely isotropic material may then be written

as (for the transformed relationships)

) § T ( 3

0] [e2 @ a2 o o o |[ s
7% QL T e oy o o B
I Q% 0% Tw aR o o B
Voo 05 s e e 0 (3.139)
J fzz) 16 @6 36 626) 0 0 2 Bgzz)
@ Lo o o o R an||amg
IR e
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3.6 Shear Warping Functions

In developing the transverse shear warping functions it is assumed that there is no delam-
ination in the N-ply laminate, and that the in-plane displacements u; and u, and interlaminar
shear stresses Ji3 and Ja3 are continuous across the interface of two adjacent layers. If there
are no applied shear loads on the bounding surfaces, then Jiz3 = Jo3 = B1z = Bz = 0 on the
z =z, and z = zy 41 surfaces, where N is the total number of layers (see Figure 3.12). If the above

requirements are enforced, the result is 4N algebraic equations that can be stated as:

BSY(z,y, 21,t) =0 (3.140a)

BY(z,y,21,t) =0 (3.140D)

ugi)(z, Y, Zi+1,t) — u(1i+1)(:c,y, zi41,t) =0 for i=1,.,.N—-1 (3.140c¢)
ugi)(m,y, Zig1,t) — ung)(z, Y, %ziy1,t) =0 for i=1,..,N-1 (3.140d)
Jé?(:r;, Y, Zit1,t) — J%H)(:c, Y,2i+1,8) =0 for i=1,..,,N—-1 (3.140e¢)
J1(3)(1" Y, Zig1,t) — J(' 1)(.'z:,y, Zi41,t) =0 for i=1,.,N—-1 (3.140f)
BSY(2,y, zn+41,1) =0 (3.140g)

B (2,y, 2n41,) =0 (3.140h)

where the u; are in the local orthogonal frame and from which the 4N unknown shear warping
function coefficients a( ) az , ﬂ(' ﬂ( ) for i = 1,..., N may be determined in terms of v4 and 75

as follows.

Given that

of? = vy + v, o) = alyy + aldys
B = by + 6Dys B = by + 6P (3.141)
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i)

where ag,) and b;c, are functions of z;, _f,’;), _Ef;-,), and @-(j)

55 , One may write

G, = 7595? + 749?2 G = 7495? + 7595? (3.142)

where g&?, gﬁ?, gg';), and gg? are polynomial functions of z, defined as

g&? = a(1‘222 + bg?za , gg’s) =z4 agis)z2 + bgis)z3 (3.143a)
gg? =z+ agil)zz + bg?z?’ , ggis) = ags)z"’ + bg?za (3.143b)

These are the functions suggested by Pai and Palazotto (1995a). The 4N equations of (3.140),
upon separation of y4 and 75, produce the 8N equations needed to solve for the coefficients of
Eqns (3.143). However, note that the functions of Eqns (3.143) are constrained to pass through
the origin regardless of the ply to which they belong. While this is required for the ply containing

the reference surface, it is not required (or even desirable) for plys away from the reference surface.

While studying the work of Pagano (1969) (see Chapter V) under the current research, it was
found that certain choices of shear moduli and ply thicknesses of a [0/90/0] laminated plate strip
could induce artificially higﬁ shear stiffness. In a phenomenon just the opposite of shear-locking,
these conditions cause the coefficients of Eqns (3.143) to become unbounded, leading to a laminate
infinitely stiff in shear. This phenomenon could be generated regardless of the gross thickness of
the laminate. Thus, even for a very thick plate, the Kirchhoff kinematic could be artificially (and

potentially unknowingly) applied to the analysis.

To further explore the weakness in this choice of functions, consider the three-ply laminate
of Figure 3.18. The outer plys are of identical thickness, and the reference surface is at the center
of the middle ply, the thickness of which may vary. If the plate is considered to be infinitely long
in the y direction, one may consider only the transverse shear deformation in the z-z plane. For

the warping functions of Eqns (3.143), this generates a 6 x 6 coefficient matrix to solve for the six

3-55




2=+1.0

Gy
A
i
G2 ......................... -
reference surface

G1 )

z=-1.0

Figure 3.18 The three-ply laminate
unknowns, agig, bgis), i =1,2,3. The determinant of this coefficient matrix, calling it [A], is
det[A] =12 (927 — 15927 + 69257 — 1228 + 25923 — 129258+ 4% — 109 5° + 647 2°),
(3.144)
where ¢ = G1/G5. Thus, for unfortunate choices of ? and g, det[A] can be made to be zero. These
conditions are:

3(-1+g)
—2+3yg

—34+2g  —342%  —3+42%
2(-1+9) ‘T 21+ YT3(1+2)

Z= , £= (3.145)
A more recent work of Pai (1995), while not mentioning the singularity problem mentioned
above, suggests an alternate choice of warping functions: one set of functions, of the form of

Egns (3.143), to be used for the ply containing the reference surface, and another set of functions

to be used for all other plys. Note that the cubic warping function has the general form

gr(:i)n = Cg;)n + dgrzl)nz + a,(qi)nzz + bg,%za (3.146)
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There are four such functions for a given layer, hence 16 N unknowns coefficients. With only
8N equations, one must specify (or omit) two of the coefficients. Pai proposes the following four

functions:

g% = ol + 8§22 | (3.1472)
g0 = o + 2 +5{2° (3.147b)
95 = )+ 2 + 52 (3.147¢)
g5 = afda? + 43025, (3.147d)

Because they couple the shear in one plane to the displacement perpendicular to that plane, Pai
refers to g&? and gg’s) as “shear-coupling functions.” The form of these functions coupling functions
is unchanged from Eqns (3.143). However, the shear-warping functions g§‘5) and ggi) have changed—
including a constant term and dropping the quadratic term. This allows for an offset from the origin
at the reference surface. Pai’s rationale for eliminating the quadratic term in the shear-warping
functions is that, for isotropic plates, elasticity solutions give rise to no linear terms in the shear

strains (only quadratic ones). Hence differentiating, for example, ggis), yields a quadratic strain

function.

Applying the functions of Eqns (3.147) to the problem of Figure 3.18 also yields a 6 x 6 system

of equations. However, the determinant of the coefficient matrix, calling it [B], is

det[B] = —10833. (3.148)

This well-behaved determinant causes trouble only when % approaches zero. Moreover, this deter-
minant is independent of the material properties. Note, however, that the shear coupling functions
are still constrained to pass through the origin. Analysis of the tire problem revealed that this

restriction was corrupting the representation of shear. Hence, the equations were modified to their
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present form of

o) = 4120 (3.1499)
o) = 7+ 2 +0{02° (3.149b)
681 = &5 + 2 + )27 ’ . (3.149¢)

g8 = o) + 8322 (3.149d)

for plys not containing the reference surface. This formulation leads to a more correct representa-

tion of the through-the-thickness warping.

Note, however, that in none of the aforementioned formulations of these warping functions
may one use an interlaminar boundary as the shell reference surface. For example, were one to
model a four-ply symmetric laminate, one could not use the shell middle surface as the reference
surface. This is a consequence of the use of a piece-wise continuous polynomial field to represent
displacements through the thickness. In order to solve the warping function equations (Eqns 3.140),
the slopes of the warping functions (g14,z, 915,z, 24,2, and ga5 .) must be have continuity at the
reference surface (z = 0). By definition, these functions are, in general, discontinuous at interlam-
inar boundaries. Furthermore, Pai recommends that an outer ply not be permitted to contain the
reference surface. Where that is desired, he recommends sp]ii;,ting the outer ply into two plys and
putting the reference surface in the inner one, thus freeing the warping function in the outer ply

(Pai 1995, p. 2300).

3.7 Thickness Stretching Functions

To generate the quadratic polynomials describing the transverse normal displacement in the
ith layer, one may use the following conditions: (1) normal displacement ugi) is continuous across

each (perfectly bonded) bonding surface and (2) the normal direct stresses are fully described by
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the appropriate transformed constitutive relationships at the bonding surfaces. From Eqns (3.139),

(3.131), (3.117), and (3.121) the appropriate 2N equations are

—(1 1 1 1
W +2802) = (@1, 0%, e HBY, BY, 2BYT (3.150a)

@-grs)(age)_l_zﬂ zi1) = z+1)( (;+1)+2ﬂ(z+1)z 1)

i+1 i+1 i+1 i I i t) i i
= @G, QL QG HBEY, BGH, 2B, - (@1, &, Ay, BY, 2B

fori=1,...,N-1 (3.150b)

ag")z¢+1 +,3§ )z2+ - ozg'+ ) sis1 — ﬂ("" )z.z 1 =0, fori=1,...,N—-1 (3.150¢)
(N) N N =N} (N) —(N) N N N

(0‘( )+ 2ﬂ( )ZN+1) =—{Qs", @33, Q }{Bgl ), ng )a 23( ) zTN+1 (3.150d)

where it is assumed that there are no externally applied normal stresses on the deformed bonding
surfaces. Eqns (3.150a) and (3.150d) describe the stress free condition at the bounding surfaces
in terms of the transverse normal and in-plane strains via the constitutive relations of Eq (3.139).
Eq (3.150b) describes the continuity of the transverse normal stress across the bonding (vs. bound-
ing) surfaces. Eq (3.150c) describes the continuity of the displacement in the thickness direction at
the bonding surface. Eq (3.150b) expresses the same balance in terms of the bonding (vs. bound-
ing) surfaces. Eq (3.150c) describes the continuity of the displacement in the thickness direction
at the bonding surface. The éssumption of zero-stress conditions at the free surfaces is critical
to the current formulation. This assumption allows the equations to be solved in terms of the

reference-surface transverse shear angles, 4 and s, since the equations are of the general form

f ( S;): bfy)"” Y %i5 Zita, [Q( )]) Y4 +.‘I( @ ), b,] y &y Yy Ziy Zigd, [Q(i)]) Y5 = J& =0 (3.151)
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where the ag-) and bg;:) represent the unknown coefficients of the shear warping and thickness stretch
functions for which one is solving. Notice that by insisting that the functions f and g independently

go to zero, one gets two equations:

f(azg;:)’ bg;))za Y, 25 Zi41, [Q(l)]) =0 (3152&)
9(af), 6,2, y, 2, 2041, Q) =0. (3.152b)

A non-zero stress at the boundary halves the available number of equations, and the warping/stretch

function coefficients cannot be solved for in the present fashion.

Equations (3.150) can be used to solve for the 2N unknowns agi) and ﬁgi), i=1,...,N,in

terms of the elements of the strain components (Eq 3.131) as

’ 1+ -1
Q O O L0 (1+e1) cos 01

O3 Q39 Q35 0A3g < a ) )
= + eg) cos -

) OO0 2o

3 30 931 033

\ (14 e1)sinye1 + (1 + e2) sinye2
o k1 — k7
af) af] af)
L . 1 k2 kS
QK

ke — k2
\
( )
Y4,c
o @ @] | [ ek ke erad | [ o
b 857 05 b3 | [ e Rab) + ksb5)  kadl3 +kabl) | [ s
\ V59 J

(3.153)
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In enforcing the continuity of displacements and shear stresses at interlaminar boundaries, the

transverse strains across these boundaries are not, in general, continuous. That is

BO) #BEM (), i=1,...,N-1; j=1,...,N+1; k=123 (3.154)

Recall that earlier in this chapter, the strain-displacement expressions (Eqns 3.131) were
simplified by eliminating the effect of Gg) on all other strains. One effect of this simplification is
the violation of strain compatibility. These relationships, given by (Saada 1989, p. 90)

826jk 82e,-1 826“, 828j1 _
dz;0z;  8z;0zy Oz;j0z; Oz 0z

(3.155)

lead to six non-trivial equations which are the necessary and sufficient conditions for the strain
components, e;;, to yield unique displacements for a simply connected region. For example, consider

one of the compatibility equations in terms of the Jaumann strains:

18%B 7]
18°Bsz _ (_3312 n 0Bs3 n aBla) ‘ (3.156)

2 9zdy oz 9z Oz dy

To indicate how the simplification of Eq (3.130) affects this equation, consider the transverse shear

strain, Bis. In Eq (3.156), the term involving B3 is

8 (0Bys
52( % ) (3.157)

In the unsimplified strain-displacement relations of Eq (3.130), this term is

0 (9B 1
2 ( a;a) = 5 [Grys: — k1Grys — k61Ga,ys + Ga,oy] (3.158)
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But using the simplified kinematics of Eq (3.131), the last term is omitted. The practical impact
of this simplification will be addressed in Chapter VII, where the current theory is applied to the

finite element analysis of the aircraft tire.

Casting the current theory into finite element form is the topic of the next chapter.

3.8 Summary

The shell theory aeveloped in this chapter attaches a rigidly translated and rotated orthog-
onal coordinate system to a deformed infinitesimal volume element. The Jaumann stresses and
stains, whose components are resolved along the axes .of this new orthogonal system, are derived.
These stress and strain measures differ from the second-Piola/Green and Cauchy measures, and the
differences are described. Particle displacements due to through-the-thickness shear are described
in terms of warping functions. The warping functions are cubic (for relating the transverse shear
deformation to activity on the reference surface), and the thickness stretch functions are quadratic
(for thickness direction displacements) polynomials. The coefficients of these polynomials are found
by enforcing certain conditions at the laminar interfaces and the shell bounding surfaces, and the
quantities describing these conditions are always related to the behavior at the two-dimensional
reference surface. These warping functions preserve the continuity of displacements and through-
the-thickness shear stresses across the bonding surfaces. They are also able to represent the direct
normal (thickness) strain and hence interlaminar peeling stresses. This is accomplished through
enforcing continuity of the direct normal stress at the bonding surfaces and the normal stress-free
boundary condition on the shell exterior. Note that the transverse shear stresses are independent of
the in—plané strains, while the transverse normal stresses are coupled with them via the constitutive
equations (3.139). However, all of the strains are coupled through the warping/stretch functions
since all of the strains contain these functions, and the coefficients of these functions are themselves

functions of the various terms of the strain-displacement relations of Eq (3.131).
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Two important simplifications in the theory incorporated by Pai and Palazotto 1995a are
worth reiterating: (1) the trapezoidal cross section effect has been ignored, such that the kinematics
of Eq (3.117) are not “true” shell kinematics, and (2) the transverse normal stretch function, G
of Eqns (3.118), is not coupled to the in-plane strains via the strain displacement relations. The
first assumption is a “shallow shell” assumption, while the second is a “thin shell” assumption.
Moreover, the current method of finding thickness stretch and shear warping functions does not

permit inclusion of either non-zero normal or shear stresses on the bounding surfaces of the shell.
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IV. Finite Element Formulation

In this chapter, the theoretical formulation of Chapter III is cast in terms suitable for numer-
ical solution. In fact, the solution to the partial differential equations of the previous chapter are
not tractable by classical analytical means, so the only recourse is to employ a numerical means of
solution. The use of a numerical method of solution, which will involve some sort of “discretization”
process, brings with it the consequence that the solution will usually not be exact (though for some
special simple cases it may be), but it will, by processing a sufficient number of equations, usually

be accurate enough for engineering purposes (Cook et al. 1989, p. 1).

There are a number of possible means, unider the wide umbrella of “numerical solution tech-
niques,” that could be employed, but finite element methods lend themselves well to problems
that can be expressed in terms of potential energy. Such methods typically involve minimizing a
functional, which is an integral expression describing the potential energy of a system in a given
configuration. The mathematical expressions of Chapter III may be used to develop this potential

energy functional, which will then be used to develop the finite element equations.

The finite element formulation presented here is that of Pai and Palazotto (1995a) where,
as in the previous chapter, the development is expanded where warranted for the sake of clarity
and completeness. The formulation of the two specific finite elements (the 36 DOF and 44 DOF

elements) is newly developed here.

The principle of virtual work, which will be used in the finite element development, states

(Washizu 1982)

/0 (81 4 6Wae)dt = 0 (4.1)
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where II and W,,. denote the elastic energy and the non-conservative energy due to applied loads!.

The non-conservative energy includes the energy due to surface loads (distributed or concentrated).

The principle of minimum potential energy states that a displacement field satisfying Eq (4.1)
does not merely make the total potential energy stationary, but is an absolute minimum. This
is due to the fact that, for problems involving elastic deformation (i.e., a strain energy density
function exists), the strain energy function is a positive definite function of the strain components.

(Zienkiewicz 1977, Washizu 1982)

Note that the principle of minimum potential energy is applicable whether or not the load
versus deformation relation is linear (Cook et al. 1989, p. 71). Nor must the stress-strain relations
be linear (Saada 1989, p. 452). Nevertheless, a caveat is in order. In unstable regions of the solution
space where snapping or bi_furcation of the solution may occur, the claim of positive-definiteness
may not be made. For example, during the snapping phenomenon, an increase in displacement is
accompanied by a decrease in load. In such regions, the solution found from éII = 0 cannot be
guaranteed to be a global minimum potential energy solution. So, while the theory of Chapter I1I
permits very general descriptions of the initial geometry (configuration) of structures to be analyzed,
the analyst must exercise caution in assessing the validity of a finite element result. In particular, if
a structure is loaded in such a fashion that snapping or buckling is possible, results in such regions
of the solution should be viewed with healthy skepticism. (Note that in some cases, behavior of a
single nodal degree of freedom may be used to determine the unstable regions of the solution space
(Palazotto et al. 1992).) While recognizing that the potentital for such regions exist in the current

work, exploring these regions of instability is not a goal of this research.

The development of the elastic energy functional and its first variation is now performed.

1By letting W consist of both conservative and non-conservative forces, Eq (4.1) is sometimes referred to as the
extended Hamilton principle (Meirovitch 1967, p. 45)
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4.1 Element Independent Formulation

In Chapter III is was stated that the Jaumann stresses and strains are work conjugate, that
is, the elastic energy, II, of the structure may be entirely accounted for by integrating the product

of the stresses and strains over the entire volume of the structure:

M= %é / / /V IO BO] 4V (4.2)

Or, since [J®] = [QW][BW] and [QW)] is symmetric,

_1ly @TQWB®
H‘2§///V[B ITQOIB®] av. (4.3)

The first variation of the potential energy is then found through

N
sm=33 [ [ [, BOT@OBO)+ BOFROsBO v

=3 [ [ [ sorriaemonay 49
i=1

where V is the undeformed volume of the shell structure and () refers to the value of the function
in the " layer of the laminate. From the strain-displacement relations of Eq (3.131) and the
definitions of the shear warping and thickness stretch functions given in Eqns (3.142), (3.118),
and (3.153), the terms in the Jaumann strains may be separated into those that depend only on
the thickness coordinate, z, and those that do not. For example, consider the direct in-plane strain

_Bgil). From Eq (3.131), it is seen that

BE? =(14+e1)cosyer — 1+ z(ky — k?) + G,z — k5Ga.




But since (Eq 3.142)

G, = 75955) +74g() and Gz = 749&4) +‘75925’
it is evident that

B = (1+e1)cosver — 1+ z(k1 — k) + 75,0 0D + 750 08 — ks (74924 + 75g(’)) . (4.5)

Note that the terms (1 + e1) cosvs1, k1

while g§Q, ggz), ggl), and gg?, are dependent only upon the thickness coordinate z. In this manner,

— kY, 74, 74,0, 75, and 75 ;. are reference surface quantities,

one may write all of the strains as the product of a matrix, [S(i)], whose values depend solely on
the thickness coordinate, z, and a vector, {¢}, of displacement quantities at the reference surface,

and are hence functions of only # and y:

4 X 3 [~ .
B{Y 1 0 o =z o o &9 o 4P
B{) o 1 0o 0o =z o0 o 49 o

< B do o8 o7 o) o) o) oY o oY
2B o 0o 1 0o 0o z g9 o9 g9
2B{?) ©o 0o 0o o 0 0 0o 0 o

| 28{) ©o 0 o0 0 ©0 0 0 0 0

or

{BY} = s®] {9},

6x1 6x12 12x1
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where the elements of {1} are given by

Y1 =(1+e1)cosvs1 — 1,
Y2 = (14 ez)cosvyea — 1,
Y3 = (14 e1)sinvyer + (1 + e3) sinye2,

¢4=k1—k?)

¢5:k2_k‘g; '/}9:75,2::

Ve =ke — kg, i0= sy,

Y7 = Ya,z, Y11 = 74,

P8 = Y4y, Y12 = 75,

The values of the shear warping and thickness stretch functions, y;:,), are

o) = kagl) +hsel), o) =

08 = kagl) + kg, ) = ksglV —

g:(;]) :ag;)+2b(z) Z, .7 = 0:1)"';9; g‘(lz) :aflg)

and

gézg,) 924 2 (k2924 + k62914) gg?,) = 925 2
() _ k k (@) _
954 = 914 2 — (k61924 + k1914) 1964 = 915 P

Hence one may write Eq (4.4) as

k4g(z)

k4ggi5),

25

— (k2925 + k62915)

— (ke1925 + k1915)

N
— Trg(iNTrore )
611—;///V6{¢} [SOITQOYSD] () aV.

]Z, jzl;"'v

(4.7)

(4.8a)

(4.8b)

(4.9)

(4.10a)

(4.10b)

(4.11)

Now, by noticing that the quantity [SW]T[QW][S®)] is dependent only upon the thickness coordi-

nate, z, one may formulate a new matrix [®], such that

(@] =)

[s<')] Q™) s®] dz.

12x12 fm= 1/2- 12x6 6x6 6x%x12
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Here, [®] is & 12 x 12 symmetric matrix. In this manner one may “integrate out” all of the quantities
that are thickness dependent, and one may write a new expression representing the first variation

of the potential energy as

o= [ [ st @)y} dea, (4.13)

which is an integral over the surface described by coordinates # and y. Note that the integration
through the thickness is exact, since the integrand is a polynomial in z of known order, O(z%), the

use of fourth order Gauss quadrature yields an exact solution (Cook et al. 1989, p. 172).

In finding an expression for §{¢} of Eq (4.13), one needs to find expressions for each of the
quantities used in expressing the vector {4} of Eq (4.7). Beginning with the stretches, e; and e,

of Eqns (3.74), it is seen that

Q+e)=(1+us—vki+wkd)?+ (ve+ukd+wkd)? +(we—ukd—vkd)? (4.14a)

(1+e2)? = (uy — vkg +wkgy)® + (1 + vy + uki+wk3)’ + (wy — ukgy — vk3)>. (4.14b)
Now define ¢;; such that
tin =14 ug—vkd +wk), tio=v,+ukd+wkd, ti3=w,—uk?— vkl (4.15a)

tay = uy — ’ng + wkgz, too =1+ vy + ukg + wlcg, tag = wy — uk'gz — ’Uk‘g, (4.15]:))

such that Eqns (4.14) become

(1+e1)? =13 +t3, + 11 (4.16a)

(1+e2)? =2, + 12, + 2. (4.16b)




Taking the variation of Eqns (4.16) results in

2(1 + e1) ey = 2811 6t11 + 2819 8t12 + 2t13 6113

2(1 + 62) (Seg = 2t21 6t21 + 2t22 (%22 + 2t23 (Stzg.

From Eqns (4.15) and Eqgns (3.77) one may write the relationship

ey

m = Tk( (1’10 sum on k’) "

where, for example,

-~ t11 1+ U g — ’Uk'g + 'l.Uk'(l)
T = = .
146 14e;

of the stretches, e; and ej:

ey = Ty16t11 + Ti26t12 + T13bth3
ey = To18t91 + Thabtos + Taabtas.

The variations of the t;;, are (from Eqs 4.15, with k9, k3, kS, k2, kQ;, and kQ, constant
§ 1) Ka, Ky, K5, Ke1 62

§t11 =6(1 + up — vkd + wkd) = bu , — kI6v + kY 6w
6t1a =6(v p + ukd + wk;) = 6v ; + kI6u + kY 6w
bt1s =6(w,g — uk? — vk = 6w p — K06u — kY 6v
tar =6(u,y — vk + wkdy) = Su,y — k36v + k6w
btan =6(1 + vy + ukd + wk3) = v,y + kJ6u + k36w

btas =6(w y — ukdy — vk3) = 6wy — kdy6u — k36v

(4.17a)

(4.17b)

(4.18)

(4.19)

Dividing Eqns (4.17) through by 2(1+e;) and using Eq (4.18) yields the expressions for the variation

(4.20a)

(4.20b)

(4.21a)
(4.21b)
(4.21¢)
(4.214)
(4.21¢)

(4.21f)




The variation of the in-plane shear rotation angle vs is found by taking the variation of Eq (3.80),

repeated here in the form of

sin v = ij-is (4.22a)
= T11To1 + T12Ta2 + TraThs (4.22b)
6(sinys) =6 (Tlszl + T12Th2 + T13T23) (4.22¢)

875 cosys = 11y 6Ty + Tia 6Tog + Tia 6Tos + 6T11 T2 + §T12T20 + 6T13T03 (4.22d)

A 191 - 199
=T116 Ti26 )
11 (1+62)+ 12 (1+ )+ 13 ( T+e >+

111 s t12 2
6(1+81)T21+6(1+61)T22+6( ) (4.226)

Taking the variation of the parenthetical quantities yields

6‘)’6 COS Y = T]_]_ (1 + 62) 6t21 - t21 682 + (1 + 62) 6t22 _2t22 6@2 +
(14 e2)? (14 e2)

Tig
- 14 e3) btaz — taz be (14 eq) 11 —t11 0e
Tia (( 2) 8ta3 — ta3 2) ( 1) 6t11 —t11 1) Ty, +

(1+€2) (1+€1)

(1+61) b6t19 — t10 beq (1—}-61) b6t13 — t13bey T
23,
(1+e1) (1+e1)®

(4.23)

or

b6 =

1 [T ((1 + 62) btgg —tn 662) n
cosye (1+ez) | (1+e2)
- (1 + 62) bty — 199 662) A <(1 + 62) btoz — toz beg
T T
12 ( 1+ ) + 113 1+ e2) +

1 [((1 +61) 6t11 t11 661) T +
cos¥s (1+e1) (14+e1) 2

(1+61) 6t13 —ti1abeq \ - (1+81) 6t1z3 —tizber \ -
T . .
( (1+e1) 2+ (1+e) Toa (4.24)




Now use Eq (4.18) to get

1 . .
676 = cos7a(1Fe3) [Tu (5t21 - T 562) +

T (&22 - Tzz 562) +Tis (6t23 — T3 6e2)] +

1
cosvs (1 +e1)

(612 — Thabex) Tas + (8t1 — Tra b1 ) o] (4.252)

K&n - T 561) Tor+

1 . .
- bty — é
cosve (L o) [(Tu 21— T11 Ty 62) +

(Tm §tas — T12 Tao 562) + (T13 Sta3 — T1aThs 56’2)] +

1
cosve (1 + e1)

(Tzz bt1g — TQZ le 661) + (T23 ot13 — T23 T13 661)] . (4.25b)

[(TZI 8try — Ton T1y 561) +

Recalling from Eq (3.80) that sin-ys = T11T21 + T12T22 + T13T23, terms are grouped as follows:

876 = [Tll 6ta1+

cos s (1 + e2)
Tyo 6tag + Tha 6taz — (Tu Tor + Ti2 T2 + T3 T23) 562] +

1 N
—_— | T 6t
cosve (1+e1) [ 210t +
Tzz bt1o + T23 bt13 — (Tzl T]l + Tzz le + T23 Tlg) 661] (4.26&)
= ; [TII 6t21 + le 6t22 + T13 6t23 — 8in Y6 662] +
cos s (1 + e2)
1 " . N
—_— Ty 6t Ty 6t 6t13 — si .
cos7e (L + e1) [ 21 0t11 + Toa 6110 + To3 6113 — sinys 561] (4.26Db)
Now recall that
be1 = T116t11 + T126t12 + Trabt13 (4.20a)
beg = T216t21 + ngétn -+ T235t23. (4.20b)




Substituting Eqns (4.20a) and (4.20b) into Eq (4.26b) one obtains

_ (T — siny6T11)8t11 + (Toz — siny6T12)6t12 + (Tos — sin v6T13)8t13
6 cosve(1+e1)
n (T11 — siny6T51)6t21 + (Thg — sin y6Tas)tas + (T13 — sin v6Th3)6ta3
cos ve(1 + e2)

67

(4.27)

Now having the variation of v, one is able to calculate the variations of its two components, vs1

and ve2 as follows. Taking the variation of Eq (3.86) and using the fact that 6vs = 6761 + 6762, one

obtains
(1 +€1)Sin761 = (1+€2)Sin‘)’62 (3.86)
(1+e1)é(sinvyer) +6(1 + e1)sinyer = (1 4 e2) 6(sinysz) + 6(1 + e2) sin g2 (4.28a)
(14 e1) 8v61(cosv61) + e1 sinys1 = (1 + e2) 6762(cos v62) + bea sin g2 (4.28b)
Now recall
676 = 6761 + 6762
or

8762 = 676 — 6761

resulting in

(1+ e1) v61(cosve1) + e sinver = (1 + e2) (676 — 8v61) (cos v62) + b€z sin ve2. (4.29)
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Solving for 41 results in

ey = (1 4 e2) cos ve2676 — sinyg1 €1 + sinygades (4.300)
o (1 +e1)cosve1 + (1 + e2) cosvs2 ’ '

In an analogous manner, §vg2 is found to be

. e 5
Syen = (14 e1) cos v61676 + sinyg18ey — sin g2 €2 (4.30b)

(1 +e1)cosver + (1 + e2) cosvs2

Expressions for the variations of the in-plane stretches, e; and ey, and for the in-plane shear
rotation angles, v, 61, and g2 have now been formed. One may now formulate the variation of
the deformed curvatures (again, the undeformed curvatures are constant, based on the undeformed
geometry, and so have no variation). Since finite rotations in space are not true vectorial quantities
(Nygard and Bergan 1989, p. 313), the concept of orthogonal virtual rotations (Pai and Nayfeh
1991) is used. First, one notes that the variations of the unit vectors iy are caused by the virtual
(and infinitesimal) rotations, 66;, of the shell element about three orthogonal axes. This may be

expressed as

0 663 —66,

6 {iraz} = [60] {i12s} , [60]= | —605 o0 66, (4.31)

60, —66, 0 ]

where 660, 605, and 603 are the virtual rigid-body rotations of the shell element with respect to the
axes £, n, and (, respectively. As an example, consider the variation of i3, depicted in Figure 4.1.
In the figure, the variation 8i3 is shown to be a vector; the components of which are generated by

two infinitesimal rotations about the & and n axes.
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Figure 4.1 The variation of unit vector i3, shown as the sum of two infinitesimal rotations

Note that Eq (4.31) is the matrix representation of the cross product
6i123 = i123 x 66 (432)

where 60 = {661,602,603}T. This cross product reflects the fact that an infinitesimal change in
direction of a unit vector, say iy, can be expressed as the sum of two virtual rotations, 662 and 6§63,
about the two other unit vectors. This dovetails with the argument used in defining the curvatures
of Eq (3.66). Recall from Figure 3.6 that the derivative, or change in direction of, a unit vector
may be described in terms of infinitesimal rotations about the other two unit vectors mutually
perpendicular to it. In the same way, one may note that the 66; are infinitesimal and mutually
perpendicular rotations and hence they are vector quantities. Now these principles are used to find
the variations of the deformed curvatures of Eqns (3.113). The variation § k; is used as an example,

as all of the other variations of curvature are found similarly.
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Recall (Eq 3.113a)

&y
kl = - oz 13
Hence its variation is given by
L A S
(5k1 = — oz 13 — oz 613. (4.33&)
Substituting Eqns (4.31) into the above yields
0 . . . Oih
6 k1 = —%(66312 - 69213)*13 - 5'5 13. (4.33b)

Using the deformed curvature matrices of Eqns (3.111), and (3.112), one may write

8605 . . . 366, . . . .
bk = (— 3 2y — 803(—ksiy — keyiz) + 5 2 i3+ 802(k1 11 + ke1 12)) ‘i3

(A T
- (k5 i2 - kl i3)'(692 i1 - 691 iz) (4330)
066
- <-—693(—k61) + a—:) + (ks)(801), (4.33d)
or
9
6](71 = % 592 —_ (—k5661 - k61603). (4.336)

Pai and Nayfeh (1991,1994b) used this approach for the remaining undeformed curvatures to show

that
—6ke1 661 66,
§kr (= g—z 60, ¢ — [Kilq 66, (4.34a)
bks 663 605
—0ks 861 56
bkes (= % 80, (—[K2]{ 66, | (4.34b)
bkq 603 603
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At present, the unknowns in this equation are the variations of the rotation angles, 66;. Defining

these variations requires the variations of the unit vectors i; and i3. These are found as follows.

Using Eqns (3.76) and the relationship of Eq (4.18), one has

ij = T11j1 + T12j2 + T13j3

1 . . .
= m (t11J1 + ti2J2 + t13)3) .

So the variation is

1
6i; = 6 | = (t11] t12] j
1; [(1 e (t11J1 + t12]2 +t13.]3)]

1 . . . 1 , , ,
— —(1 y 61) 6 (tll.]l + 1122 + t13j3) +6 [m‘)“] (i11J1 +t12J2 + t13J3)
1 . . . be . . .
= ————(1 n el) (6t11.]1 + 6t12J2 + 6t13.]3) - (1 +_;1)2 (t11J1 +t12J2 + t13J3)
1 . 561
= —— (6t St jo + 6t13js) — ———1i;
d+e1) (6t11J1 + 6t12j2 + 6t13 j3) +e) iz

1 . . . .
= UFe) (6t11d1 + 6t122 + 6133 — beqiy) .

The derivation of §1i5 is virtually identical, so in summary,

61; =

j16t jobt j3bt13 — 156
1+€1(']1 11+ j2bt12 + jabt1z — ijber)

. 1 . . . .
61y = ————(J16t21 + j2btaa + jabtaz —is6ez).

1+€2

‘Now one may find the variations of the ;. From Eq (4.31) it is evident that
b1 = —60311 + 60, i3,

SO one may write

(5i2'i3 = 601

(3.76)

(4.35)

(4.362)
(4.36b)
(4.36c)
(4.36d)

(4.36¢)

(4.37a)

(4.37b)

(4.38)

(4.39)




But Eqns (3.93a) and (3.93c) describe the relationship between {ij23} and {ij33} such that

sin ¥g2 , COS Y61 .
— 12 + 14

= . : 4.40
2 cosve 1 cosye * (4.40)
So
§ip = —b (51“762) i — %255 45 <°°s 7‘“) iy + 1oL, (4.41)
oS Y6 cos e oS g cos 76
Substituting the above into Eq (4.39) yields
50, = [—-6 (sm')/sz) i - s1n’y626ii iy (cos'rs1) i+ cos%léié] s (4.42)
COS g coS Y6 COS Vg oS Y6
But since iz-ij = i3+i3 = 0, it is clear that
861 = Bigds = —TOk §izei — 102 6. g, (4.43)
oS Y6 oS Y6 :
Now, from Eqns (4.37), one obtains
6ij-ia = Tt e (J16t11 + J2bt1a + jabtiz —ijbe; ) is, ' (4.44)
where, again, i3+i; = 0 leads to
- 1. . . .
(5li'13 = 1 (Jltstu +J26t12 +_]36t13)'13. (445)
+ €1
From Eq (3.93b), it is seen that
is = T31j1 + Ts2j2 + T33js. (4.46)
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Substituting this into Eq (4.45) gives

1 . . . . . .
Tt el (J16t11 + j2bt12 + jabt13) (Ta1j1 + Ta2j2 + T33ja)

1
Tte (T31 6t11 + Tsg 6t12 + T33 6t13).

6ii'i3 =

(4.47a)

Similar reasoning is used to find

. . 1
612-13 = E(Tm bta1 + T3q b6tag + Ts3 6tz3). (4.47b)

Substituting Eqns (4.47) into Eq (4.43) yields

€OS Y61
01 =——————<(T5168t21 + Ts26t22 + T3a6t
1 cosve(l—}-ez)( 316t21 + T326t22 + T336t23)

sin Ys2
— ————————(T316t11 + T326t19 + T336t13). 4.48a
cos76(1+el)( 310t11 320%12 336113) ( )

In the same way, the variation (virtual rotation) of 63 is found to be

.. sinve1 .. . €OS Ye2
609 =—61y413 = 8iziz —

6i;-i3
€Os Y5

sin g1
= (T3 6 Tso6t T3t
c0576(1_}_62)( 316t21 + T326t09 + T336t23)

€08 Y52
— et (T3 61 T3a6t T336t13). 4.48b
cos76(1+el)( 316t11 + Ta26t13 + T336t13) ( )

One finds the variation of 5 as follows. From Eq (4.31),

6 i] =46 03 iz -6 62 i3 (449&)

§ip = —603iy + 601 is. (4.49b)

4-16




Forming the inner product of the above equations with iz and i; respectively leads to

é il'iz =46 93 (4.50&)
§igis = —60s. (4.50b)
Subtracting Eq (4.50b) from Eq (4.50a) leads to
1,.. . . .
6 03 = 5 (6 1112 — 612'11) . (451)

Consider the first term in the parenthesis of Eq (4.51). From Eq (3.93¢),

. cosYsz,  sinver, sinys2, | cosve1,
61312 =6 i — i3 )| — i; + i3
COS Y6 €OS 76 €OS Y €OS Y6

cos . cos . sin . sin . sin . cos .
— (6 7621i + Y62 Sis — 6 Ye1 iy — Y61 61§> . (_ 762li + 76112>
COS g COS Y6 COS Y6 COS Y COS Y6 COS Y6

_ (_Sin%‘z 6(305762 _ CosYe1 6Sin')’61) n <Sin’)’61 Sin')’ez) (i3-6i)
= i'vi3

COSYs COS7Ye COSYg  COS Y6 cos? v

COS Y61 COS¥62 \ ,+ .

—" ] (15+615) . 4.52
+ (S22 ) i (1.520)

Likewise, the second term of Eq (4.51) is

coSYe2 SiNYez  SiNYs1 COSYe1 COS Y61 COS Y62 \ ;v
5 _ § ) + (—) (i-6i3)

Siged; = [ —
2 ( COS7Y6 COS7Ys COSYs COSYe cos? g
SIN Y61 SIN Y62 \ ;0 co
<—c052 o ) (i5-61) - (4.52b)

Substituting Eqns (4.52) into Eq (4.51) yields

COS Y62 6Sin Y62 + sin ¥1 6COS '761]
€OS Y6

505 = 1 { [_ sin Y2 508762 cOS e 6sin Y61
2 COS7Ys COS7Yg  COS7Yg COS7Yg  COS7Yg COS7Yg  COS7g

Sin y61 SIn Y62 — COS Y61 COS Y62 \ ;v (- COS Y61 COS V62 — SIN Y61 8IN Y62 \ ,. .
+ ( cos? > (i3-6i3) + ( 5 ) (1§-6li)} )
Y6 cos? g
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(4.53)

Collecting the last two terms of the above leaves

50 1 sin Ye2 6COS Ye2  €OS7e1 6sin Ye1 + COS Y62 6sin'rez sin vg1 6COS Y61
879 COSYs  COSYe COSYs COS7Ys COSYg COSYe COSYs COSYg

(sin e1 sin g2 — cos 61 €Os Ye2) (13615 — ii-éii)} .

cos? v
(4.54)
Noting that
sin 1 Sin Ye2 — €OS Y61 €OS Yo2 = — €08 (Y61 + Y62) = — €OS ¥s, (4.55)
further simplification leads to:
1 sin cos cos sin cos sin sin cos
505 = = { [_ Y62 5 Ye2 Y61 5 Y61 + Y62 5 Y62 + Y61 5 761:'
2 COSYe COS7Ys COS7Ye COS7g COSYs COS7Ye COSvYs COS7Yg
1
— ——— (15615 — 15+615) 5 .
L (i — iyt
(4.56)
Expanding each of the four terms in the brackets [ ] above leads to
__sin g3 50862 _ _sinyey [ — cos 6 8v62 Sin Y62 + cOS Y62 676 Sin 76 (4.572)
COSYs COS7Ys €OS Ve cos? v )
k! 6sin Y61 _ COSYe1 (COSYs 661 €OS Y61 + sin yg1 0¥ sin g (4.57b)
COSYg COSYg  COS7g cos? v '
CO8 Y632 6sin Y62 _ €OS¥e2 [ COSYs 6¥62 COSYs2 + SIN Y62 676 Sin ¥6 (4.57c)
COSYs  COS7e COS Y6 cos2 v )
sin g1 6cos Y61 _ sinygy [ — cos e 0¥s1 5in Y61 + €OS Y61 66 SIn Vs (4.57d)
COS7g COS7Ys  COS7e cos? vg ’
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Eqns (4.57a) and (4.57¢) sum to

i i 1
__ SIn%e2 6005762 + COS Y62 68111’)’62 - - 863, (4.58a)
COSYs COS7Yg  COSYg cOSYg  cosZ7e
while Eqns (4.57b) and (4.57d) sum to
_ Cos7Ye1 65111761 + SII Y61 6005')’61 - _ - 6761 (4.58b)
COSYg COSYs  COSYs COSYe cos? vg
Substituting Eqns (4.58) into Eq (4.56) yields
603 = —— (6763 — 6761) + (8i5+15 — 8i5+1;) (4.59)
379 cos? g Te2 = 0761 2cosg: L 2 27 ’

The inner product term (6i;-i; — 6i5-ij) is now examined. Consider the first half of the term. From

Eq (4.37a), it is evident that

511'15 = T+ e (_]15t11 + J26t12 + j3bti13 — 11661)-12. (4.60)

Noting from Eqns (3.76) and (4.22a) that

i; = Ti1j1 4 Tizdo + Tiajs, and  sinve = iz-is, (4.61)
Eq (4.60) becomes
. . 1 o - A .
fiiy = 1 (s 811 + Tz 8t1 + Thg b1 — sin v b1 ) (4.62)
1

Substituting Eq (4.20a) for de; into the above and simplifying yields

. . 1 -~ . -~ - . . . . .
61i'li = (1—+;—1-—)—(T21 — SIn 76T11)6t11 + (T22 — sin 76T12)6t12 + (T23 — sin ‘)’6T13)6t13 (463&)
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Similarly,

. 1 - . S - . S S . -
612-11 = m(Tn — Sin ‘)/6T21)5t21 + (T12 — sin 76T22)6t22 + (T13 — Sin ‘76T23)6t23 (4.63b)

Substituting Eqns (4.63) into Eq (4.59) produces

(6762 — 6761)

603 =
3 9 cos?ve
1 (PO L .
3 cos7 { ((1 Ten) (To1 — sinveT11)6t11 + (To — sinyeT12)6t12 + (To3 — Sln76T13)5t13)
6
1 A . S A . N A . A
— | m———(T11 — siny6T21)6t21 + (T12 — sin y6T22)0t22 + (T13 — sinv6T33)6t23 (4.64)
(1+e2) .

Note that this result differs from that of Eq (30) of Pai and Palazotto (1995a, p. 3057), in which
the coefficient of the (§vs2 — 8761) term is %, rather than 20—025? This is of no consequence to
the finite element formulation given the method of describing §{s)} in Eq (4.69). That is, in the

process of describing the variation of {1} for the finite element method, one need never explicitly

form the variation of 63 via Eq (4.64).

Having now succeeded in formulating the variations of each of the kinematic quantities com-
prising the vector {¥} of Eq (4.7), and hence the derivatives of these variations as well, they may
now be represented in terms of the variations of the global displacement variables and their deriva-
tives: bu, év, bw, bu g, 8V z, 6wz, Suy, 6V, Wy, OU oz, 0V oo, OW oo, OU gy, OV 4y, SW 4y, OU oy,

8V 5y, and 6w zy.

Development of the finite element formulation is now resumed from Eq (4.13), restated here:

= [ [sqwy@livazay, (4.13)
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where
N Zi41 .
@=Y [ EOrEPs e (4.12)

At this point in the work of Pai and Palazotto (1995a), a simplification is made: the deformed
curvatures, k;, in [S()] are replaced by their undeformed counterparts, k. The validity of this
assumption was examined using the problem of Section 6.3, a composite cylindrical shell subjected
to a transverse load. Using this simplification resulted in a slightly more flexible structure. The
displacement increased a maximum of 0.2% (usually far less) and the stresses and strains increased
a maximum of 0.5% (only the transverse shear values were affected to any degree). These results
support the use of the simplification for this geometry. It will be examined again in the context of

tire inflation in Chapter VII.

A slight detour in formulating the equations is now taken in order to highlight an important
difference between the Jaumann and Green/Lagrange formulations. As will be shown, the difference
in the two approaches is fundamental and has a major impact on the linearization of the equations
and therefore on the finite element formulation as a whole. In particular, it will be shown that
because the vector {1} cannot be separated neatly into linear and nonlinear parts, one must modify

the Newton-Raphson linearization scheme to represent the elements of {#} in the formulation.

First, because the Jaumann strains are defined geometrically, square root terms appear in
their terms (see Eq 3.74). This is avoided in the Green/Lagrange formulation, which is derived from
the change in squared length of an infinitesimal element. The Green’s strain formulation allows a
simpler form for the variation of the strains. As an example, consider a component of the Green’s

strain at the reference surface, denoted EI$ (see Palazotto and Dennis 1992, p. 71 for details):

1
Biff = ug+ 5 (4o +wl) (465)

= {L™{U} + (U} [H){U}, (465b)
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Where {U} is the displacement gradient vector, {L} is a vector of constants, and [H] is a symmetric
matrix of constants. Note that the strain is neatly separated into a linear and nonlinear part. In

addition, the variation of the strain may be written as

SEY = ({L}T +{U}'[H]) {U} ‘ (4.66)

In contrast, the corresponding Jaumann strain at the reference surface is

B = (14 1) cosyer — 1, (4.67)

where the expressions for e; and 71 are given by Eqns (3.74) and (3.90) respectively. These equa-~
tions cannot be easily separated into linear and nonlinear parts, as can Eqns (4.65). Nonetheless,
as shown in Eq (4.6a), one may write a vector of “strain-like” quantities at the reference surface
to define the strains, a vector referred to as {1}. Still, though, this does not facilitate writing the
strains as a simple product of matrices and the displacement gradient vector. So in order to take

the variation of the strains, one resorts to the following method.

Recall that {1/} is a function of the global displacement quantities and their derivatives. There
are 24 such quantities, and they may be arranged in a vector, {U}, the displacement gradient vector.
The variation of the vector {1}, in terms of the elements of the displacement gradient vector, may

be written as (see, e.g.2, Apostol 1974, p. 353)

o 0 0 o

§{w)} = ‘”léU + ¢16U2+ 8$15U3+ - 852146U24+
31/)2 3%/)2 s Oty
8U16U1 + a0, ——0Us + — 30, ——6Us+---+ 3U246U24+

2The reference deals with differentiation and is here extended to the variation, as the rules for both operations are
similar. (Differentiation deals with the effect of infinitesimal changes in an independent variable on the dependent
variable. The variation deals with the effect of a small variation of a dependent variable upon a function.) See, e.g.,
Weinstock (1974), Meirovitch (1967).




012 012 012 012
U, SUL + 30, 86U, + aU5 §Us+ - ETi 6Ugq (468)
or, more compactly,
8y} = [®])6{U} (4.69)

where the displacement gradient vector, {U}, is given by

{U} ={y, ugz, uy, Uoo, Yoy, Yyy, Vs Vs Uy, Voo, Yoy, Vyys

24x1
W, Wgey, Wy, Wer, Wy, Wyy, T4, V4,2, Y4,y V5, V5,25 75,:1/}T: (470)
and
i
V., = . 4.71
*J BUJ ( )

The expressions in [¥] are complicated and were developed using Mathematica for the current work

(see Appendix A). Consider the term ¥ (6,4) as an example of the complexity:

U (6,4) = 9ps/0U4
=0 (ks — kJ) /Ot 0z

=0 (k51 + ko2 — kgl - kgz) /au,a:a: (4.72)
Substituting Eqns (3.113) into the above yields

T (6,4) = 0 (—To1,:T51 — To2 o T2 — Tz, Ts3 + Thakgy — Tioky — Tiskd + —T11 4T

~Ti2,yTa2 — T13,y T35 — Torks + Tozkds + Tosk3) /0u oo (4.73)

4-23




The only terms of the above equation that have can be functions of u 5, are those having terms of

the form u ., so the above equation is simplified by eliminating all other terms to yield

U (6,4) = 8(—T51,2T31 — T22,0T32 — T3,:T33) [0t 55 (4.74)

Using Eqns (3.72), (3.77), (3.80), (3.90)3, and the identities

sin (tan™' z) = %, cos (sin™'z) = /1 - 22, (4.75)
r

the numerator, ¥ (6,4),, and denominator, ¥ (6,4),, of ¥ (6,4) are seen to be

U (6,4) = ¢ (= (ab) + + d°) \/a (a5—2a3b+ab2+3a2d2—bd2—Zﬁd2m>

(—(caes) +cace) (4.76a)
¥ £6,4)D=\/E (a® —ab+ d?)? (b+\/;7>——.d—2)

\/b (a2b—2ab2+b3—ad2+3bd2—2d2m)

\/022 cs? +c32cs? —2ci1cpcac5 +c12¢52+c32¢c52 —2c1 36406 — 22305 C6 + €12 cg? + 22 62

(4.76b)
where
c=1+u,—vkd+wkd (4.77a)
ca=vg+ukd+wkd (4.77b)
€3 = Wg — uk(l) —v k31 (4.77¢)
ca=uy—vk+wkd, (4.774d)
es=1+vy,+ukd+wkd (4.77¢)

3These calculations were carried out using Mathematica.
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ce =wy —ukdy—vks (4.77f)

a=4/c?+c%+ck (4.77g)
b=+/c}+c%+ck (4.77h)
¢ = cyc4 + cac5 + ¢3C6 (4771)

d=1/Vab (4.775)

The calculations of the elements of [¥] and the elements of [Y], a second-derivative matrix
(developed later as a result of the modified linearization scheme), make up the bulk of the computer
code. Note that the displacements u, v, and w and their derivatives are written in terms of the
local, undeformed, curvilinear axis system, zyz. The local, orthogonal, deformed axis system is

brought into play via the Ti; and T}; in the elements of the matrix [¥].

In Eq (4.69), 6{1p} was written as [¥]6{U}. In a similar fashion, one can write {1} in terms

of the displacement gradient vector, {U} as

; W
{¢} = [¥}{U}, where ¥;;= U, (4.78a)
This comes about from the fact that the i*! element of {16} may be written as*
1 4 )
i = ——Uj, =1,2,...,24. .
bi= g v, i (4.78b)

Unfortunately, Eq (4.78a) becomes problematic when generating the initial stiffness matrix, where
usually both {4} and {U} are the vectors consisting of all zeroes. Also, note that in general [¥]
is not equal to [®]. For example, consider W (6,4) = 8ts/dU,; and ¥ (6,4) = 1hs/(24Us). The

terms in U (6,4) were derived earlier and can easily be seen to be quite different from \i!(6,4) =

4For example, 1), = % (%’; U + %’; Uy+---+ %}1;4— U24) = -2—14— (2441) = 91. Note that the factor of 24 is missing
from Eq (63) in the work by Pai and Palazotto (1995a, p. 3064).
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(ke2 — k25)/(24 u 55). This will lead to an asymmetric stiffness matrix as implied by Eq (4.79), and

this undesirable characteristic will be addressed later in this section.

Substituting Eqns (4.69) and (4.78a) int(; Eq (4.13) yields
6T = / / (6UYT [ [@][¥]{U} dz dy. (4.79)

Before moving on to a specific choice of a finite element, note that the middle three terms
of Eq (4.79) represent the 24 x 24 element-independent stiffness matrix. Its characteristics are

described in the next section.

4.2 Element-Independent Stiffnesses and Coupling

The element-independent stiffness matrix (EISM) may be used to represent the strain energy
of an element in the vicinity of its current state of deformation in terms of the elements of the

displacement gradient vector of Eq (4.70) repeated here:

{U} = {w, ue, Uy, Yoz, Uay, Uyy, U, Vs Uy, Vzzs Vays Vyy,
24x1

W, Wy, Wy, Wge, Wey, Wyy, Y4, V4,2, V4,5 V5, V5,25 75,y}T- (470)
The strain-energy density is of the form
{UY*[EISM){U}, (4.80)

where the [EISM] is of the form [®]T[®][®] (see Eq 4.79), such that non-zero terms in the EISM
indicate the strain-energy-producing members of {U}. In this section, the “state of deformation”
is the initial, undeformed state. The EISM gives some insight into how the deformations of various

shell geometries are coupled to each other, with these various geometries having different initial
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curvatures. From Eq (4.79), it is seen that the EISM depends on the constitutive make-up of the
shell as well, via the [®] matrix. However, in this section, the examination is restricted to coupling

due to curvature by examining only isotropic shells.

In the following figures describing the EISMs for several initial configurations, a “” symbol
represents a zero entry in the EISM, a “o” symbol represents a zero element on the diagonal of the
matrix, and a “O” represents a non-zero element of the matrix. The numbers 1-24 represent the

respective elements of the displacement gradient vector, {U} (Eq 4.70).

The entries of the EISM represent something quite different from the entries in the element-
dependent stiffness matrix (EDSM). This is most easily seen in the diagonal entries. Note that for
geometries with no curvature in the z-direction (the plate and the cylindrical shell of Figures 4.3
and 4.4) there is no stiffness associated with u (entry (1,1)). This is because rigid body displacement
in the u-direction is a permissible mode for these geometries. In contrast, this entry for an EDSM
is not zero, as the diagonal entry represents the force generated in the z direction at the node in

question with all other DOF fized.

As curvatures are added, the element-independent matrix becomes more populated as more
rigid-body displacements are ruled out. It is also worth noting that the entries of the EISM
represent forces associated with infinitesimal movement, which is why a v-displacement rigid—body
movement is permissible for the cylindrical shell (a finite displacement in the v direction would
not be, since deformation would be generated). This is illustrated in Figure 4.2. F igure 4.2(a)
attempts to illustrate the movement associated with an infinitesimal displacement of each material
point along an arc in its v (tangential) direction. Note that for a sufficiently smail (i.e., infinitesimal)
displacement, the motion causes no deformation, only a rigid-body movement. In Figure 4.2(b), the
effect of finite movement in the v direction of points along the arc is shown. Note that deformation

occurs.
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Figure 4.2 (a) Rigid-body movement associated with small v displacements, (b) Deformation
associated with finite v displacements

4.2.1 Flat Plate. In this configuration, all initial curvatures are zero, and so the EISM is

quite sparse due to the lack of coupling between deformations (Figure 4.3).

4.2.2 Cylindrical Shell.  The cylindrical shell element has non-zero curvature k9, with all
other curvatures zero. This curvature corresponds to 1/ Ry, where Ry is the radius of an # =constant
coordinate curve. In going from the plate to the shell, coupling between extension and bending
due to an initial curvature has been introduced, hence this matrix (Figure 4.4) has more non-
zero elements than that of the flat plate. Most notably, entry (13,13), which correlates to energy
associated with the displacement w, is now populated. This is because the initial curvature has
eliminated the rigid body motion in the w direction. This effect is illustrated in Figure 4.5. In
Figure 4.5(a) and (b), both displacements are meant to illustrate small (infinitesimal) movement.
Note that for the line (plate), w movement causes no deformation. However, for the arc (shell)
depicted in (b), simultaneous movement of all points along the arc in the w (in this case —w)
direction causes deformation. This is true even for infinitesimal displacement. Hence, the element

in the EISM corresponding to this movement is populated.
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Figure 4.3 Element independent stiffness matrix for flat plate, undeformed configuration
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Figure 4.4 Element independent stiffness matrix for cylindrical shell, undeformed configuration
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Figure 4.5 (a) Rigid body motion associated with small w displacement; (b) deformation caused
by small w displacement when initial curvature is present

4.2.3 Bi-Curved Shell (Spherical/Toroidal).  This configuration has non-zero curvatures
k9, k9, and k2. For the circular torus, the value of k9 is éonstant at 1/R,. Even though in this case
the major radius R; is constant, curvatures k{ and k2 vary with location on the reference surface.
The EISM for this configuration is depicted in Figure 4.6. More coupling terms have appeared.
The population of elements (1,1) and (7,7) correspond to the deformations resulting from v and v

movement respectively.

4.2.4 Shell with All Curvatures Present.  This is an unlikely shell having all curvatures
non-zero. In addition to bi-directional curvature, such a shell would have twisting curvatures about
the z and y axes. And, for all curvatures to be non-zero, it would have to be represented using a
non-orthogonal coordinate system. Nevertheless, the EISM for this configuration (Figure 4.7) illus-
trates how the current formulation has permissible displacement gradients with no associz;uted linear

stiffness (in the initial, undeformed state), namely, second derivatives of the in-plane displacements.
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Figure 4.6 Element independent stiffness matrix for shell with two curvatures, undeformed con-

figuration
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Figure 4.7 Element independent stiffness matrix for shell with all curvatures, undeformed config-

uration
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4.8 FElement-Dependent Formulation

To this point, the displacement field has not been approximated, so the expressions for the
elastic energy and its variation could be considered “exact.” But in order to numerically solve the
equations, the displacements must be approximated. This is done by assuming that the displace-
ment field may be répresented by polynomial functions (shape functions) over some finite region
(the finite element). Moreover, it is assumed that if the domain is made up of a sufficient number

of such elements, the solution will provide acceptable results.

Toward this end, the components of {U} are approximated through the choice of a specific

finite element. Using shape functions to discretize the displacements, one obtains

{u,v,w,74,75}T = [N(r, s)]{qm}, (4.81)

where {qlil} is the vector whose members are the nodal displacements of element j, and [N(r, 5)] is

a matrix of two-dimensional finite element shape functions written in terms of natural coordinates
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r and s, and given by

(4.82)
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Figure 4.8 The 36-DOF shell element

The shape functions are given by

HE = 1/8(1 4 rk r)(1 + s 8)(2 + 7k 7 + 55 5 — 12 — 57) (4.83a)
HE = (a/8)ri(1 + re ) (rer — 1)(1 + 5 8) (4.83b)
HE = (b/8)sk(1+ i 7)(sk s — 1)(1 + s, 5)° (4.83¢)
L5 = (1/4)(1 + rer)(1 + sk s) (4.83d)

where 2a and 2b are dimensions along ¢ and y of the rectangular (in curvilinear coordinates)

element, and the values of 74 and s are determined by the local coordinates (r, s) of the k" node.

Again, u, v, and w are displacements relative to the undeformed local curvilinear system, and
v4 and 75 represent reference surface shear rotation angles in the 7-¢ and £-n planes respectively,

expressed in terms of the global coordinates.

For the present research, two finite elements are used: an. eight-noded isoparametric shell

element having 36 degrees-of-freedom and a four-noded, 44 DOF element.

The eight-noded 36 DOF element (Figure 4.8) has seven DOF at each corner node: u, v, w,

W, Wy, Va4, and v5. At each mid-side node are two DOF: u and v. Hermitian shape functions are
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Figure 4.9 The 44-DOF shell element

used for the w DOF, bi-quadratic Lagrangian shape functions are used for the in-plane displace-
ments ¥ and v, and bi-linear shape functions are used for the transverse shear quantities 74 and
vs. This is a non-conforming element and, as will be shown later, the discontinuity of derivatives

of u and v at inter-element boundaries causes problems in analyses involving very large rotations.

Figure 4.9 shows the four-noded 44 DOF element. The degrees of freedom at each corner are
U, Ug, Uy, U, Vg, Vy, W, Wg, Wy, V4, and v5. Hermitian shape functions are used for all DOF

except the transverse shear DOF, v4 and 75, which use bi-linear shape functions.

The element-dependent formulation is now continued with matrix dimensions as shown re-

flecting the use of the 44 DOF element. Substituting Eq (4.81) into Eq (4.70) yields

{Uz(f,ly)} = []32500; f)] {a(z,»)V'} = [A] [D(r, 54)] {a(z, )"} (4.84)
[D(z,y)] = [A] [8(r, 5)] [N(r, 5)], (4.85)
24x44 24x24 24x5  5x44
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where [8] is a 24 x 5 differential operator matrix given by
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o
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o

o
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o

Pl

4.86)

The matrix [D] is in terms of the natural coordinates r and s of the isoparametric formulation

and must be expressed in terms of the global coordinates z and y for Eq (4.84) to hold true. The

matrix [A] is used to perform the necessary conversion. Because only rectangular elements whose

axes ¢ and y are aligned with the natural axes r and s are used in the current formulation, the

matrix [A] is diagonal, with elements:

A1y =A77=A1313=A19,19 = Az 22 =1
Az =Ags = A1414=Az020 = Az323=1/a
Az3z=Ago = A1515 = As121 = Agg0a=1/b
Asa = A1o10 = A1s16 = 1/a®

Ass = A11,11 = Airi7 = 1/ab

A6 = A12,12 = A1s18 = 1/b.
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The differentiated shape function matrix in natural coordinates is given by

H, 0 H, 0 H; 0 Hy 0
6%3 6x38 6x3 6x38 6x3 6x38 6x3 6x38

0 H; 0 H, 0 Hs; 0 H, 0

6x3 6x3 6x8 6xX3 6x38 6X3 6x38 6X3 6x5
[D(r,s)]=| © H; 0 H, 0 Hj 0 Hy 0 |, (4.88)
24%x 44 6X6 6x3 6x8 6x3 6x38 6X3 6Xx38 6X3 6X2

0 Ly 0 L 0 Ljs 0 Ly 0

3x9 3x1 3x10 3x1 3x10 3x1 3x10 3x1 3x1

| 3x10 3x1 3x10 3x1 3x10 3x1 3x10 3x1 |

where

i HE M

k k k
Hl,r HZ,r H3,r

Lk
HE HE HE
Hy = 1,s 2,8 3,s ’ and Ly = ‘Ckr , (489)
Hlf,rr Hg,rr 0
Lk

k k k
Hl,rs ,H2,r.s H3ra

k k
Hl,ss 0 HB 38

and the shape functions are given in Eqns (4.83).

Substituting Eq (4.84) into Eq (4.79) yields

N‘ 3 3 »
oI =3 / A[j,{éq“]}T[DlT[W}T[@] [#)[D]{q"} de dy

Ne
= {sqUI} KU {ql}
={6a}"[K]{a}, (4.90)
where
= [ [ (oI [e(]$)D] s dy. (4.91)
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Or, in terms of the isoparametric formulation,

KU = /_ 1 /_ DI [@] (D] det(3]) dr ds. (4.92)

44x44

N, is the total number of elements in the mesh, AU is the area of the jth element, [KW] is the
stiffness matrix of the j*® element, [K] is the assembled global structural stiffness matrix, and {q}
is the global structural displacement vector referenced to the coordinate system associated with

the undeformed structure (Lagrangian).

In a typical Green’s strain formulation, determining the order of the integrand of Eq (4.92)
is a straight-forward task, as the elements of the integrand are polynomials of known order. Not
so in the current formulation. The integrand contains the square root expressions generated by
Eqns (3.74) and (3.90) and is not a polynomial. For the current analyses, no significant improvement

in the result occurred beyond a four-by-four Gauss quadrature scheme.

Since, in general, [®] # [#], [KU!] and hence [K] may be asymmetric. This is not a conse-
quence of some physical feature of the formulation, such as nonconservative loading; the asymmetry
is due to the scheme used in formulating the variational expressions. In a finite element description
of a conservative system having a potential, the stiffness matrix will be symmetric (Schweizerhof
and Ramm 1984). The asymmetry of the the stiffness matrix of Eq (4.92) arises from using an
inconsistent approach in formulating the integrand of Eq (4.13). The expression for é{¢} is only
exact for infinitesimal increments of {U}, just as the differential of a dependent variable is only
exact for infinitesimal increments of the independent variable (Ayres and Mendelson 1990, p. 196).
On the other hand, the expression {¢} = [@]{U} of Eq (4.78a) is exact for any size of increment in
{U}. Obviously, in the numerical implementation of the theory, one cannot apply infinitesimal in-
crements of displacement. So, in practice, this asymmetric stiffness is not calculated from Eq (4.92),
but from the equation for the tangent stiffness, formulated later (Eq 4.106). This expression for

the tangent stiffness yields a symmetric matrix, hence the initial stiffness is found by evaluating
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the tangent stiffness in the undeformed configuration, {q} = {0}. This circumvents having to store
or manipulate asymmetric matrices. Another sever drawback in attempting to use Eq (4.78a) for
the stiffness matrix is the singularity (division by zero) that would occur in attempting to generate

the [®] matrix at {U} = {0}, the undeformed state.

Note also that the matrix [K] is dependent upon the displacements (and their derivatives)
present in the displacement gradient vector, {U}. As in the development of §{4}, this precludes
direct application of the Newton-Raphson scheme to [K], since [K] is a function of {U}, not {q}.

The square-root terms present in Eq (3.74) and (3.90) again cause the problem.

Thus to implement the Newton-Raphson scheme, one first must derive the incremental forms

of {q[j]}a {U}, {#}, and [¥]:
{9} = {d°} + {Aad} , {U}={U"}+{AU}, (4.93)

where {q°} is the equilibrium solution (at the last converged increment) and {Aqll} is the incre-
mental displacement vector. One may generate the first-order Taylor series expansions of {1} and
[®] as follows. Starting with the vector {4}, assume the value of this vector is known at some
known value of the displacement gradient vector, {U} = {U°}. The quantity {U®} could represent
an initial condition or the condition satisfyiné the convergence criteria at some increment. This

known vector value is defined as

{$°} = (¥} uy=(uo} - (4.94)

A new value of {U} is now specified based upon an incremental change, as {U} = {U°} + {AU}.
One may find the new value of {1} via a Taylor series expansion:
Op; AU; AU, 8%y,

{¥}Hvyr1avy = WHuy=quey +AU; 7 + 4o (4.95)
{U}+{aU} W=t A 5 o T 803005 |y ey
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Ignoring higher order terms, one may write

{#} = {¥°} + [2°{AU}, (4.96)
where {$°} = {¥}{u}=uey and (@0 = %‘U!’—; P But the matrix [®] appears in Eq (4.92)

and must also be written in incremental form. Just as was done with {1}, one may write

(] = [9°] + [2]. | (197)
The entry E;; of [Z] is given by
0%
Bij = e . .98
i = 30,00 AU (4.98)

Notice that having to represent §{1} as in Eq (4.69) has led to a second derivative matrix though,
strictly speaking, this is only a “first-order” ezpansion of [®]. Once again, this is due to the use
of the Jaumann strain measure, which is based upon an engineering-strain-type of definition and
leads to the square-root terms of Eqns (3.74). Eqns (4.96) and (4.97) are then used to expand

[KUN{ql} into a Taylor series as follows. Recall from Eqns (4.78a) and (4.84) that
{¥} = [$}{U} = [§][DKa}, (4.99)
so that Eq (4.92) may be used to write
KOYa)= [ [ D)) dady (4.100)

Now substituting Eqns (4.96) and (4.97) into the above yields

KIHa)= [ [ (DI [#)(°) + (DI (€] (@I[%°HAU} + [DI'(E"[]{y°)} dody

(4.101)
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In substituting Eqns (4.96) and (4.97) into Eq (4.100), a higher-order term that produces {AU}T{AU}

has been discarded.

Using Eq (4.98) one may define a new symmetric matrix, [Y], from (Pai 1994):

: = 8%
Given Ej; = 8T, 00 AU, (4.102a)

E]T[@1{¥°} = Ei®x 0
_ 0%
T 8U;8U,,
_ 9%
~ 8U,;8U,,

= Pp®;z

AU, ®; 192

®;p Yy AU

0%
au;aU,, “Um

= YimAUp, (4.102b)

Symmetry of Y;,, is shown as follows:

8%¢;
Tim = ¥4 i aU-gZ
k3 m

Yy
= 1/;2@;61-5([—.:5—, since [®] is symmetric
1 m

= ¢2<I>kj%, since the order of partial differentiation is interchangeable
m )

= Tmi (4.102¢)
[="[@){¥°} = [x]{AU}, (4.103)
and the entries of Y;; are
822 o,
YT =T = 0(I>mn——-———-—n = 0<I)mn ne .
i = Tji = ¥m 38U, Ym au, (4.104)
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Substituting Eqns (4.103) and (4.84) into Eq (4.101) yields
(KU {q} = (KU {AqW} + (KO {q} |1qmy=iqoy - (4.105)
a4x1

Eq (4.105) corresponds to a modified Newton iteration method (Bathe 1982), where [KUI] is the

element tangent stiffness matrix given by

&)= [ [ I (#](%) + [x)[D] dz dy (4.106)
44%44 Al
and
KA} Liqonogeny= [ [ DI} b (4.107)

Note that the [KU] of Eq (4.106) is a symmetric matrix. Furthermore, note that Eq (4.107)

describes the resultant force vector

{RH} = (KU {qW} | qun—(qo; - (4.108)

This will be useful for calculation of nodal loads in subsequent sections.

4.4 FEzxternal Loads

Using Eq (4.81) the variation of non-conservative energy due to external loads is

SWhe ://{6u, 8v, bw, 6va, 6vs}{R1, Ra, Rs, O, O}sz dy

N. .
= / / {EDYTINIT(Rs, Ra, R, 0, 0} dedy
j=1 Ab

N
=> {6qW}T{RH]}

={;q}T{R} (4.109)
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Figure 4.10 Load R acting at a node and its components along the Lagrangian coordinate axes

where R;, Rs, and Rg are distributed external loads along the directions of the axes z, y, and z,

respecﬁively (see Figure 4.10. Normal and

tangential loads on the shell are most easily described in terms of these shell curvilinear
coordinates. The global structural loading vector is {R}, and {RM} is the elemental nodal loading

vector, which is given by

{RU]}E// [N]*{R1, Ra, Rs, 0, 0}Tdzdy (4.110)
Aldl

44%x1

Here, it is assumed that R;, Rs, and Rg are functions of  and y only and not functions of displace-
ments u, v, and w. Some loading scenarios, such as tire pressurization, may need to be described
in terms of the deformed surface. This is easily handled by applying the load incrementally. This

point is discussed further in Chapter VII.

4.5 Solution to Incremental Equations

An incremental/iterative Newton-Raphson method is used to solve the nonlinear. finite ele-

ment equations. Substituting Eqns (4.90), (4.105), and (4.109) into Eq (4.1) yields the incremental
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equations of motion:

Ne Nﬂ
SR AGT) = 3 (R} - KT (a)) iy (a.111)
j=1 =1

Again, the asymmetric stiffness matrix [KW] need never be formulated, since the product [KU]{qlil}
is a vector described by Eq (4.107). Hence, in the implementation of the algorithm, routines for

manipulating and storing real symmetric matrices may be employed.

In nonlinear analyses, the solution to Eq (4.111) is found through an iterative process. In
this iterative process, some sort of criterion must be used to determine when the “correct” solution
to the finite element equations has been found. In the finite element literature, such criteria are
referred as convergence (Owen and Hinton 1980, p. 65) or, more correctly termination criteria®

(Cook et al. 1989, p. 508-509).

The criterion used in the current work (Owen and Hinton 1980, p. 65, Palazotto and Dennis
1992, p. 134) compares successive displacement solution vectors to quantitatively assess the “cor-
rectness” of the solution. The global displacement solution vector {q} for the i + 1% iteration is

compared to that of the i*" iteration in the current displacement increment as follows:

lI{a}li+1 — [[{a}]ls
[{a}h

x 100 < ¢, (4.112)
where ||{q}|| is the Euclidean norm of the displacement vector {q} having n elements such that

i{a}ll = (4.113)

5The word convergence implies certain strict mathematical properties (see, e.g., Apostol 1974, p. 189) not satisfied
by termination criteria. Furthermore, convergence in the finite element sense is more properly applied to character-
istics of particular finite elements to provide convergent solutions—a topic of an enormous body of literature that
does involve convergence in the mathematically rigorous sense.

4-44




Note that Eq (4.112) could be (wrongly) satisfied by two vectors, {q}i+1 and {q}; having the
same Euclidean norm, but different “directions” (in n-dimensional space, where n is the number of
degrees of freedom in the model). That is, two very different solution vectors could, coincidentally,
have norms close enough to each other to satisfy the convergence criterion. But the incremental
algorithm, applied with good judgment, can mitigate the possibility of such a coincidence. First,
the state vector {q} represents the physical deformed configuration of the structure, so state vectors
having “very different” directions correspond to states of deformed geometry that are very different.
In our incremental approach, we are searching for a “nearby” equilibrium state. If we are searching
in a stable portion of the load-deflection solution space, a nearby solution will not be very different
from the current one. However, when in the neighborhood of a critical (snapping) or bifurcation
(multiple solutions) point, a “nearby” equilibrium state may be found having a very different
geometry. But the likelihood of this new state vector having the same norm as its predecessor,
while extant, is arguably remote for the following reasons: (1) snapping is a jump discontinuity,
and the new deformed configuration (state or “direction”) is usually, in the author’s experience, very
different from the state just prior to snapping and, (2) in an incremental approach, the bifurcated

state found will be close to the previous one though, by definition, will not be unique.

Clearly, some foreknowledge of the behavior of the structure (vis-a-vis possible snapping,
bifurcation buckling, etc.) as well as good engineering judgment and caution must be applied in

the context of each problem to be solved.

4.6 Summary

In this chapter, the equations of the theory of Chapter III have been written in a form
suitable for numerical solution. In the following chapters, this formulation will be applied to various
shell structures having progressively increasing levels of complexity in both initial configuration

(geometrically and materially) and in degree of deformation (progressing to geometric nonlinearity).
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V. Linear Results

In this chapter, the finite element formulation is evaluated in the context of geometrically
linear (small displacement) analyses. (Recall that in all of the analyses presented under the current
research, material linearity is assumed, regardless of the magnitude of displacements.) Here the
interest is in taking the first steps in demonstrating that the finite element formulation of Chapter IV
has been properly implemented (coded). First, the patch test is applied to a plane-stress problem
of in-plane loading of a flat plate, then a plate loaded by a transverse pressure is analyzed, followed
by a pinched cylindrical shell and, to further assess the stress formulation, the stress results of the
current finite element solution are compared to some known elasticity solutions using the infinite
plate strip of Pagano (1969). Finally, the formulation is applied to a shell having two (different)
radii of curvature: the circular torus. This problem anticipates the subject of Chapter VII, where

the formulation is applied to another shell of revolution, namely the aircraft tire.

For the finite element models presented in this chapter (and the next two), solution conver-
gence for a particular model were assessed through modeling each problem with progressively finer
meshes until, in the author’s judgment, further mesh refinement would not produce an apprecia-
bly better solution. To assess the quality of the solution, comparisons with previously published

experimental and analytical data are made.

The code developed under the present research is referred to as JAGS, for “Jaumann Analysis
of General Shells.” The text and table headings will use this acronym for the sake of brevity. Also

note that for all isotropic problems, the reference surface is chosen to be the middle-surface.

5.1 Patch Test for 44-DOF Element

The patch test, originated by Irons (Bazeley et al. 1965, Taylor et al. 1986), was used
to assess the quality of the 44-DOF element. The goal of the patch test is to ensure that, for the

element in question, refinement of a mesh modeling a structure results in a sequence of approximate
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Figure 5.1 In-plane patch test of the 44-DOF shell element

solutions that converge (in the theoretical limit) to the exact solution of the problem. The patch
test is passed if, throughout each element, the computed stresses agree exactly (within the limits of

machine precision) with the stresses for the physical problem modeled (Cook et al. 1989, p. 129).

Note that certain restrictions on the program limit the scope of the test, and so limit the
generality of the conclusions drawn from it. Normally, the patch test serves as a necessary and
sufficient condition to declare an element valid (for linear problems), in the sense of convergence.
For the current program, which only allows quadrilateral elements and has no DOF corresponding
directly to bending modes, the patch test serves as a falsifying tool. That is, while failure of the test
sufficiently proves a “bad” element, passing the test does not guarantee a “good” one. Or, to put
it another way, for the current approach, passing the patch test is a necessary, but not sufficient,

condition for the element.

With these limitations in mind, an in-plane patch test was conducted as shown in Figure 5.1.
The “moments” appearing in the figure are applied to the in-plane degrees of freedom %y, which

correspond to in-plane rotation. They arise from applying equivalent nodal loads along the edge

5-2




z = 500 mm to represent a uniform load of 1 MPa along that edge!, given a plate thickness of 10 mm.
The material properties of plate are £ = 200 GPa, v = 0.3, and G = 76.923 GPa. The boundary
conditions applied at nodes 1,4, and Tareu =uy =v=w=wz; = wy = 0; u = uy = 0; and
v =uy = 0, respectively. These conditions lead to the correct calculated stresses of Jli = 1IMPa,

all other J,,, = 0, and strains of By; = 5 ustrain, Bsy = B3z = —1.5 pstrain, all other B,,, = 0.

Since there are no DOF corresponding directly to shell bending, linear or otherwise, the
patch test cannot be used directly for such deformation. However, simple problems having a known
solution may be performed to assess the quality of the element in bending, and such problems are

the subject of Section 5.4.

5.2 The Square Isotropic Plate Subjected to Uniform Transverse Pressure
A simply supported square isotropic plate is subjected to a uniform transverse pressure. The
nondimensionalized transverse displacement of the plate at its center is given by

wh3E
qoa* ’

(5.1)

w =

where w, is the displacement at the center, £ = 1GPa is the Young’s modulus of the material,

h = 100mm is the plate thickness, go = 1 MPa is the magnitude of the transverse pressure, and

a = 1 meter is the length of one side of the square plate. The plate is simply supported along its

edges, and the boundary conditions are given by

at £ =0, (yz-symmetric) : u=uy =vys=wy=7v=0
at £ =a/2, (simple): uy=vy=w=wy=7,=0
at y =0, (zz-symmetric) : uy =v=v, =wy =74 =0

at y = a/2, (simple) : uy=vy,=w=wy=75=0 (56.2)

1See Section 7.3.1 for a discussion of equivalent nodal loads.
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a

Figure 5.2 Isotropic square flat plate problem indicating 2 x 2 mesh of square elements modeling
one fourth of plate

Because of symmetric loading and boundary conditions, one fourth of the plate is modeled (see
Figure 5.2). The results are compared to the closed-form Navier series solutions of Reddy (1984a),
as well as to those of Palazotto and Dennis (1992). Uniform meshes of various size were used to
assess the convergence characteristics of the 44-DOF element, and the results for three thickness
ratios, S = a/h, are presented in Table 5.1. Reddy’s result for this problem was found by assuming
a displacement field of the form
N M
w(z,y) = Z Z Wonn sin M7 sin E, (5.3)

a b

n=1 m=1

where M and N were chosen to be 19. A higher order shear deformation theory was used but, as
with the work of Palazotto and Dennis (1992), no thickness stretching was included. Note that for
the very thin plate, § = 100, the present method has a slightly more flexible response for a given
mesh size than that of Palazotto and Dennis (+0.11% for the 8 x 8 mesh), while for the thicker
plates, S = 10 and S = 5, the present code yields what appears to be a slightly stiffer (—0.17 % and
—0.22 %, respectively) response. The more flexible response for the thin plate may be attributed
to the use of a higher order element in the JAGS code. The apparently stiffer response for the

thicker plates, however, is due to strain energy going into thickness stretching, making less available
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[ S'=a/h | Mesh | Palazotto and Dennis 1992 | JAGS | Reddy 1984a |

100 1x1 0.01616
2%x2 0.02397 0.04304
3x3 0.04381
4x4 0.04253 0.04406
5x5 0.04418
6x 6 0.04424
8x38 0.04425 0.04430
0.0444
10 1x1 0.01623
2x2 0.04613 0.04536
3x3 0.04607
4x4 0.04662 0.04634
5%x5 0.04645
6 X 6 0.04651
8 x8 0.04666 0.04658
0.0467
5 I1x1 0.02012
2x2 0.05378 0.05238
3x3 0.05291
4x4 0.05360 0.05319
5x5 0.05331
6 x 6 0.05338
8x8 0.05356 0.05344
0.0535

Table 5.1 Nondimensionalized displacement, @, at center of simply supported plate transversely
loaded with uniform pressure




[ Integration Order | w (JAGS) |

1 0.3796701121549270

2 0.04657749159481588
3 0.04657744309154569
4 0.04657744309154816

Table 5.2 Comparison of Gauss integration order to nondimensionalized displacement at center of
simply supported plate transversely loaded with uniform pressure (8 x 8 mesh, S = 10)

for transverse displacement. So the response, while appearing to be less flexible, is actually just
trading a small amount of transverse displacement for thickness stretching. Alsé note that, for
all three thicknesses, the JAGS code exhibits monotonic convergence. That is, as the number of
elements is increased, the response becomes monotonically more flexible. This is not the case for
the thickest plate, S = 5, of Palazotto and Dennis, where the solution appears to become stiffer

(though convergent) as more elements are employed.

As mentioned in the previous chapter, the integral equation that yields the stiffness matrix
(Eq 4.92) is not a polynomial expression, and hence is not amenable to exact integration via Gauss
quadrature. Table 5.2 indicates the effect of varying the order of integration for the current problem.
In all of the analyses in the current research, a fourth order Gauss quadrature scheme was used for
integrating the stiffness equations. Further increases in integration order changed the result only

near the order of machine precision which, for these analyses, was 16-digits.

5.8 The Isoiropic Pinched Cylinder

In this problem, an isotropic cylinder of length L = 262.9mm, radius R = 125.8026 mm, and
thickness h = 2.3876 mm is pinched at opposite points along its length by transverse point loads
(see Figure 5.3). The cylinder is modeled with the 44-DOF element and with four elements in
the z direction and 15 elements in the y directions, with all elements of equal size. The material

’ properties are given by E = 72.395GPa and v = 0.3125. The boundary conditions used for the
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Figure 5.3

problem are

Isotropic cylinder pinched by transverse point loads at mid-length indicating region
used in modeling one eighth of cylinder

at z =0, (yz-symmetric) : u=uy =vz=we =75 =0
at ¢ = L/2, free

at y =0, (zz-symmetric): uy =v="v

at y = R%, (zz-symmetric) : uy =v=vy=wy =74 =0. (5.4)

The deflections at each of the six points shown in Figure 5.3 (point 2 lies midway between points

1 and 3, likewise point 5 between 4 and 6) are listed in Table 5.3. Timoshenko’s result is based

upon the theory of inextensional deformations of shells. In this approach, the straining at the

mid-surface of the (thin) shell is entirely neglected, and only bending is considered. A by-product

of this approach is that bending along the z-axis is neglected, hence identical values of deflection

are indicated along an  coordinate (see Table 5.3). The present (JAGS) approach, which includes
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| Source T 1+ | 2 | 38 | 4 [ 5 | 6 |
Timoshenko and Woinowski-Krieger 1959 || -2.753 | -2.753 | -2.753 | 2.540 | 2.540 | 2.540
Palazotto and Dennis 1992 -2.791 | -2.756 | -2.687 | 2.503 | 2.504 | 2.516
JAGS -2.884 | -2.765 | -2.741 | 2.551 | 2.552 | 2.565

Table 5.3 Comparison of displacements at six points on the pinched isotropic cylinder; displace-
ments in millimeters

p(x)

Figure 5.4 Half plate strip in circular bending

not only transverse shear deformation but thickness stretching, yields a result only slightly more
flexible than that of Palazotto and Dennis. This is a “thin shell” problem, as the ratio of the
shell’s radius to its thickness, S = R/h = 53, is large enough to neglect both transverse shear and
thickness stretch effects. As was seen with the thin flat plate, for a given mesh the JAGS model
yields a slightly more flexible response when thickness stretching is negligible, due to the use of a

higher order element.

5.4 FElasticity Solutions of Pagano and the Flat Plate Strip

To evaluate the element in bending, the finite element scheme is assessed against the work of
Pagano (1969), in which elasticity solutions are presented for the infinitely wide plate strip loaded

with a transverse sinusoidal pressure load as in Figure 5.4. The load is defined as

M).] , (5.5)

p(z) = posin [7( I
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[ S=L/h || w (JAGS) | w (Pagano) |

50 0.5256 0.5270
20 0.6092 0.6173
10 0.9033 0.9316
5 2.0164 2.0908

Table 5.4 Finite element results as compared to Pagano (1969) for the [0/90/0] laminated plate
strip of various thickness ratios S

and the normalized center displacement, w, is given by

_ 100 Ezzhswc
_ 5.
= (56)

where w, is the displacement at the center of the strip, and L is the strip length. A comparison
of the @ values generated by the current finite element program to those of Pagano for a [0/90/0]

laminated composite are presented in Table 5.4. The material properties used in the analysis are

Ey; =172.37 GPa (5.7a)
Eay = E33 = 6.8948 GPa (5.7b)
Vig = Vi3 = Va3 = 0.25 (6.7¢)
Giz = G5 = 3.4474 GPa (5.7d)
Gas = 1.37896 GPa (5.7¢)

(5.71)

A length dimensions of L = 400mm was held constant, while the thickness, h, was varied to generate
different values of S = L/h. Twenty elements were used to model half the strip, so the element

width was 10mm. The boundary conditions used were:

at £ =0, (yz-symmetric) : u=Uy =V =V, =Vy = We =Wy =Y2 =75 =0

at = L/2, (simple): uy=v=vz=vy=w=wy=7=0
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along y = 0 and y = 2b (plane strain and symmetry) :uy =v=v,=vy =wy =74 = 0.

(5.8)

The middle of the middle ply is used as the reference surface. Note that all degrees of freedom in
the width direction are zeroed, as infinite width is being modeled in that direction (a condition of

plane strain in the z-z plane).

The displacements and stresses generated by the finite element program approximate the
elasticity solution with varying success. The displacement @ = (Eq2u1)/(poh) is matched very
well except in the middle (90°) ply (Figure 5.5). The reason for this difference between the
displacement function of the current work and that of Pagano’s elasticity solution lies in how the
warping function is defined. Recall from the definitions of Eqns (3.118) the displacement due to
warping in the zz-plane:

G =vz+ a&i)zz + ,Bgi)ze‘.

Now consider the slope of this function as reference surface is approached:
lirr(l) G, = 1in(1) s + 2a§i)z + 3/3§i)z2 = 5. (5.9)
z— z2—

Unlike the solution from the equations of elasticity, the slope of the displacement %; is constrained
to také on the value of the shear at the reference surface. The “wiggle” in the middle ply reflects
this constraint on the displacement function, which is still required to yield a match between
displacements and (transverse shear and normal) stresses at the interface. Despite the “wiggle”,
though, note how the use of a layer-wise displacement field has allowed the displacement to “zig-
zag” at the ply interface. This allows for a very good approximation of the displacement. The

results based upon classical laminated plate theory (CLPT) are also shown.
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Figure 5.5 Displacement u; at plate strip end, S = 6

The in-plane stress Ji; = Ji1/po at the plate strip center is plotted in Figure 5.6. The finite
element stresses are nearly identical to the elasticity solution. (The effect of the “wiggle” in the

displacement #; will be seen in the transverse shear stress, Ji3.)

Transverse shear stresses Jyi3 = J13/po are shown in Figure 5.7. The current results model
the stresses fairly well, albeit only in the average sense over the .center ply. Note how the “zig-zag”
displacement function facilitates continuous stresses across the ply boundary. The CLPT solution
which, as a matter of course, neglects transverse shear effects, is derived from the eqﬁilibrium

equations,

Tezye — —Oz,2 (5.10&)

)

0z,2 = —Trz,2- (510}))
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Figure 5.6 Membrane stress J1; at plate strip center, S =6
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Figure 5.7 Transverse shear stress Ji3 at plate strip end, S =6
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Figure 5.8 Transverse normal stress Ja3 at plate strip center, S =6

The normal stress Jz3, shown in Figure 5.8, is poorly modeled, as the finite element plate
strip is loaded by equivalent nodal loads, not a transverse pressure. The scheme for determining the
transverse stretching (see Section 3.7) assumes stress free boundary conditions, which are incorrect
for this problem. Using the current formulation, matching non-zero stresses at the boundaries
would require incorporation of an iterative scheme that would vary the stretch functions such that

the additional constraint(s) would be matched.

5.5 The Toroidal Shell

A linear analysis of a toroidal shell section was undertaken to verify model validity with
more than one curvature. The analysis was chosen to be linear for comparison purposes with work
done by Zhang and Redekop (1992), not because of any limitations to the algorithm in the current

research.
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The 90-degree section of circular toroidal pipe is loaded over a small portion of its surface
by a prescribed pressure load (Figure 5.9). This loading condition simulates the trunnion pipe
configuration of Lewis and Chao (1990). The toroidal section is simply supported at both endé in a
fashion that allows movement of the end in the circumferential direction, but not in the meridional

direction. Hence the boundary conditions for the 36 DOF element model are:

at z =0, simple: v=w=75=0
at £ = 264.37Tmm, simple: v =w=795=0
at y = 0, zz-symmetric: v =wy=74=10

at y = 264.37Tmm, zz-symmetric: v =wy =v4 = 0. (5.11)

These conditions constrain the ends to remain circular and of constant radii.

The results using an 80 element model are depicted in Figure 5.10 and Figure 5.11, indicating
good agreement with the finite element work of Zhang and Redekop (1992), who used an 80
element model 16-noded, two-dimensional thin shell elements. Their model contained 775 nodes
and 3873 DOF, compared to 277 nodes and 1049 DOF in the JAGS model. In this analysis, only
displacements have been compared. Stress analysis of bi-curved shells will be included in the tire

analysis of Chapter VII.

5.6 Summary

In the next chapter, the analyses will no longer be limited to geometric linearity (small
displacements) and will examine the finite element formulation in the context of large displacements

and rotations for both isotropic and composite structures.
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simple

r=84.15 mm
R =252.45 mm
t=7.1 mm

E =207 GPa
v=0.3

Figure 5.9 Isotropic toroidal shell segment subjected to a pressure load over a portion of its
surface
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Figure 5.10 Displacement along outer circumference of toroidal shell section between simply sup-
ported ends (curve AB in Figure 5.9) .
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Figure 5.11 Displacement along meridional line 45 degrees to shell free ends, with zero degrees
corresponding to the outer circumference of the torus (curve CD of Figure 5.9)
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VI. Nonlinear Results

To assess the validity of the finite element formulation, it is applied to a composite beam, three
isotropic shallow cylindrical panels of varying thicknesses, a composite circular cylindrical arch, and
a deep isotropic arch displaying large rotations. As the finite element code is displacement-based,

the results in this section primarily compare displacement, rather than stress results.

Prescribed displacement steps (rather than load steps) are used in these analyses. This is
done to facilitate capturing the unstable portions of the load-displacement response curves that

arise in snap-buckling problems.

A convergence tolerance of € = 0.0001% is used in all of the analyses presented herein in

accordance with Eq (4.112).

6.1 The Composite Beam

A cantilevered composite beam! is subjected to a concentrated end load. The layup of the
12-ply beam is [0/90]ss, and the properties of the AS4/3501-6 specially orthotropic laminae are:
E;1 = 142 GPa, Eyy = E33 = 9.8 GPa, G132 = G13 = 6 GPa, Gz = 3.63 GPa, 112 = v13 = 0.3,
ve3 = 0.35, ¢ = 0.124 mm. The beam is modeled with the 36 DOF element and 1 X 22 mesh,
exploiting the symmetry of the beam with respect to the z-z plane (Figure 6.1). The beam is
cantilevered at one end and free at the end subjected to the transverse point-load. The following
boundary conditions were applied:

at £ =0, (clamped): u=v=w=ws=wy =714 =75 =

at y =0, (xz-symmetric): v=wy =5 = 0. (6.1)

!The finite element is a shell element, so the term “beam” is used loosely here. In fact, a very narrow shell is
being considered.
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Figure 6.1 Composite cantilever beam subjected to an end-load

The reference surface was chosen to be the middle of the seventh ply, numbering from the bottom?.
Sixteen uniform (w=25mm) displacement steps are applied to the beam tip, while the displacements
are measured 50mm from the tip. The results are compared (Figure 6.2) to the experiments of
Minguet and Dugundji (1990) on high aspect ratio, thin laminated beams. The finite element
results in the current research indicate a slightly stiffer response than that of the experiments, as
expected, but the agreement with the experimental data is quite good. The resultant load, R;, at

the node of interest (node ) is found through the use of Eq (4.108), restated here:

{R} = [K{a} |{q}={a°}>

where the global stiffness matrix, [K], is calculated based upon the converged value of the displace-
ment vector {q} |[{q}={q0}- It is noted that the laminate thicknesses used for the analysis are values

corrected for loss of material due to sanding of the laminate given by Minguet and Dugundji.

6.2 The Shallow Cylindrical Panel

The shallow isotropic cylindrical panel of Figure 6.3 is subjected to a transverse point load.

The response of the panel varies significantly as the shell thickness is changed, making this a popular

?Recall from Section 3.6 that an interlaminar boundary may not be used as the reference surface due to the
definitions of the warping functions.
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Figure 6.2 Load versus displacement for composite cantilever beam; experimental results are from
(Minguet and Dugundji 1990)

validation problem (Palazotto and Dennis 1992). A uniform 24-element mesh having 4 elements in
the z direction and 6 elements in the y direction is used to model one quarter of the panel. The
panel is hinged along both straight edges and free on both curved ends, so the boundary conditions

for the 36 DOF element are given by:

at £ =0, (yz-symmetric) : u=wz =74 =0
at y =0, (zz-symmetric): v=wy, =95 =0

at y = 254mm, (hinged) : u=v=w =175 = 0. (6.2)

The reference surface is the middle surface. The results are compared with the work of other
researchers (Sabir and Lock 1972, Palazotto and Dennis 1992, Crisfield 1981, Sabir and Djoudi
1995) in Figure 6.4, Figure 6.5, and Figure 6.6 for thicknesses of 25.4 mm, 12.7 mm, and 6.35

mm respectively. There is excellent agreement in all cases. Note that while the use of an in-
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E=3.1GPa P
v=0J3

h =254 mm, 12.7 mm, 6.35 mm

Figure 6.3 Shallow circular cylindrical panel subjected to a transverse point load

cremental displacement scheme allows the snap-through phenomenon to be captured, it precludes
depicting the snap-back phenomenon that occurs in the thinnest panel (Figure 6.6). A combina-
tion load/displacement scheme, or one of the constrained search path algorithms, such as that of
Riks (1979), can capture equilibrium states along very complex and convoluted equilibrium paths,

including the snap-back (see, e.g. Miller and Palazotto 1995).

6.3 The Composite Cylindrical Shell

One quarter of a composite cylindrical shell is modeled exploiting the symmetric loading
and boundary conditions, and the fact that the laminate is of cross-ply construction. A mesh of 96
uniform elements, eight in the z-direction and twelve in the y-direction, was found to be convergent
for the 36-DOF element. The geometry and material properties are depicted in Figure 6.7. The

shell thickness is A = 1.016 mm (0.04in). The shell is fully-clamped along its straight edges and
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Figure 6.4 Shallow circular cylindrical panel subjected to a transverse point load, A = 25.4 mm
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Figure 6.5 Shallow circular cylindrical panel subjected to a transverse point load, A = 12.7 mm
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Figure 6.6 Shallow circular cylindrical panel subjected to a transverse point load, h = 6.35 mm

free on both curved ends, i.e.,

at ¢ = 0, (yz-symmetric) : u=w;=7=0
at y =0, (zz-symmetric): v=wy =5 =0

at y = 152.4mm, (clamped) : u=v=w=wys=wy =71 =7 =0. (6.3)

Th reference surface is chosen to be middle of the second ply, numbering from the bottom. Thirty-
two displacement steps of various sizes ranging from 5mm to 25mm were used, and the load-
displacement curve for the point-loaded structure is shown in Figure 6.8. Agreement with the work
of Palazotto and Dennis (1992) is good, though the the current work indicates a stiffer response in
the unstable (snapping) region of the curve. In this region the transverse normal stresses approach
J3s3 = —16 MPa, and it is possible that the inclusion of these stresses leads to the difference. (For

comparison purposes, the membrane stresses Ji; and Jo3 are on the order of 500 MPa.) Were this
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Figure 6.7 Composite circular cylindrical shell subjected to a transverse point load
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Figure 6.8 Load versus displacement for composite cylindrical shell at point of load application

an isotropic shell, the transverse normal stress would be an unlikely contributor, as this is a “thin”
shell (R/h = 300). But in a composite shell, rules-of-thumb are difficult to apply (Reissner 1950).
Another possible, though less likely, source of disparity is the use of an entirely different solution
algorithm by Palazotto and Dennis. They apply a constrained search path solution algorithm (see,
e.g., Tsai and Palazotto 1990) to the problem, versus the displacement control method used in the

present research.

6.4 The Isotropic Deep Arch

A deep isotropic arch is modeled with a 1 x 32 mesh (Figure 6.9). Again, symmetry in the z-z
plane is assumed, allowing the finite element mesh to model only one-half (in the width direction)

of the arch. The boundary conditions of the arch are asymmetric: the left end is clamped and the




E =41.3688 GPa
v=10.33

Figure 6.9 Isotropic deep circular arch with asymmetric boundary conditions subjected to trans-
verse point load
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right end is hinged. In terms of the nodal degrees of freedom, the boundary conditions are:

at z = 25.4mm, yz-symmetric: u=wy =75 =0

aty=0, clamped: u=v=w=w,=wy =71 =75=0

at y = 9531mm, hinged: u=v=w=w, =7 =0, (6.4)

)

and the reference surface is the middle surface. This asymmetry, coupled with the large opening
angle of the arch, presents a challenging geometrically nonlinear problem. A variety of displacement

increment sizes were used in an attempt to solve this problem.

Comparing the results with those of Surana (1983), who used a total Lagrangian scheme
based on the degenerated shell element of Ahmad et al. (1970). Hence normals to the reference
surface may neither stretch nor warp. In the present analysis, the arch is modeled with the 36 DOF
element (656 DOF total) and fails to capture the deformation beyond w/R = 0.7 (Figure 6.10).
This is the case despite using twice the number of elements as Surana, who used 16 eight-noded
elements having five DOF at each node (415 DOF in the assembled configuration). Note that
the largest rotation in this unsatisfactory simulation is about 90 degrees and takes place at the
hinge side of the arch at the maximum deflection attained (Figure 6.11). As mentioned earlier, the
36 DOF element is not C! continuous in the in-plane displacements u and v. That is, the values
of ug, Uy, vz, and vy are not continuous across inter-element boundaries. Consider the impact
of this discontinuity. At any point on the (deforming) reference surface, the rigidly translated and

rotated reference frame, {ii23} is given by Eq (3.104) to be

{iz2s} = [T]{j12s}- (3.104)
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Figure 6.10 Load versus displacement for crown of deep arch, 36 degree-of-freedom element,; fail-
ure to converge occurs near w/R = 0.7 (see text)
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Figure 6.11 Deformed geometry of deep arch indicating maximum deflection achieved for 36 and
44 degree-of-freedom elements




Now recall from Eqns (3.92), and (3.95) that

1 - A
Ty = ( 11 €OS Y62 — To1 sin ')’61) (3.95a)
oS Vg
1 A A,
Tia = ( 12 €08 Y62 — To2 5in 761) (3.95b)
cOS Y
1 N L
Tiz = ( 13 ¢0s Y62 — Th3 sin 761) (3.95¢)
COS ¢
1 A R
Ty = (— 11 81 Ye2 + T21 cos 761) (3.95d)
oS g .
1 o .
Tze = (—le sin ¥ga + T2 cos ’)’61) (3.95¢)
€os e
1 P R
Tos = (—T13 sin yg2 + T3 cos “)‘51) (3.95f)
oS Y
Ts1 = (T12T23 — T13T52)/ Ro (3.92a)
Tsg = (T13T% — T11723)/ Ro (3.92b)
T33 = (TuTzz - lele)/Ro (3.92¢)

Ry = \/(leTza — T13Th2)? 4 (T13To1 — T11T23)? + (T11T2e — TiaTh1)? =] cosve | (3.92d)

where, from Eqns (3.77)

G Lt us— vk + wk? fro o Vet uk + wk; o W= ukd — vk,
11 = 1+ e y 412 — 1+61 y 413 1+61 ’

oo Wy = vkd + wkg, do,_ LHvg+ ukd + wkd . _ Wy — uk2y — vk3
21 1+€2 y £22 1+62 y £23 1+€2

From tﬁese equations, it can be seen that if the DOF in question are not continuous at a point, then
there can be multiple values of the {ijz3} triad at that point. This is a serious defect, since the
change in the orientation of this triad as one moves along the reference surface yields the deformed
curvatures through Eqns (3.113), repeated here:

oi;
kl E—a—;'lg = _Tlm,$T3m - T21k(6)1 + TZZk? + T23kg

o1y .
ks E°a—y2'13 = ~Tom yTom + T11k3 — Ti2k3y — T3k
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i, .
ke1 E—a—;'ls = —Tom o Tam + T11kS; — Tiok} — Tiske

8i;
ke 5—5;-'13 = —TimyTom — Torky + Tazkdy + Tosky
6i; .
ks 55;1'12 = Tim o Tom — T31k3; + Taok? + Task?
01y

kg E—a—y'il = —Tom yTim — Ts1k3 + Tszkds + Tasks.

The difference between the deformed and undeformed curvatures are directly responsible for strain
energy due to bending. For example, in the current problem (ks — k3), where k9 = 1/R (the arch
radius) givés rise to the largest contributor to strain energy: that due to bending of the arch. The
discontinuity of this strain at the inter-element boundaries causes the program to fail to converge

when the discrepancy gets large enough to induce a numerical instability.

So the problem is run again with the 44 DOF element and the following boundary conditions:

at ¢ = 25.4mm, (yz-symmetric)u=uy =vys=Wy=75=0
aty=0, (clamped)iu=uys=uy=v=vs,=wW=wWe =Wy =73 =75 =0
at y = 9531mm, (hinged)iu=uy=v=vy=w=w=7=0

) ¥

(6.5)

As mentioned before, this element is C! continuous in all displacement variables (though not in
the transverse shear variables). The result, generated with a 1 x 16 mesh (374 DOF), is shown
in Figure 6.12. These displacement results are in good agreement with Surana. For comparison
purposes, the maximum rotation for this problem is about 150 degrees, again at the hinged end
of the arch (Figure 6.11). To examine the convergence properties of the element, the number of
elements used in the model was successively reduced (Figure 6.13). As can be seen, 12 elements
(286 DOF total) are adequate to model the arch. Furthermore, 8 elements (198 DOF) appear

satisfactory for displacements up to w/R = 0.8. An additional analysis was made to determine
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Figure 6.13 Load versus displacement for crown of deep arch indicating response with different
numbers of equal size elements
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Figure 6.14 Load versus displacement for crown of deep arch indicating maximum displacement
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the maximum displacement increment that could be used with the model (see Figure 6.14). It was

found that the maximum load condition could be reached in slightly more than three displacement

steps; Surana used 17 displacement steps, though the authors do not claim that any effort was

made by Surana to optimize in this regard.

6.5 Summary

Now having exercised the finite element program in some nonlinear applications, the next
step will be to attempt to model a more complex structure. One having properties which vary
along the reference surface as well as through the thickness, and having a very general shape: the

aircraft tire.
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VII. Application to the Aircraft Tire

As presentved in Chapter II, there is a large body of excellent work in the analysis of tires
through the use of the finite element method. Nonetheless, the present research is novel in its
combining of a number of heretofore disparate features: (1) A high-fidelity geometric model of
the anisotropic tire is developed entirely with two-dimensional finite elements. (2) This model
incorporates a higher order and layer-wise shear deformation shell theory and includes thickness
stretching. (3) The model includes the effects of large displacements and rotations (i.e., geometric
nonlinearity). (4) Surface contact of the tire is modeled using a boundary condition modification

scheme and two-dimensional finite elements.

By way of comparison, the work of Kim and Noor (1990) incorporated a geometrically high-
fidelity tire model, but not higher order shear nor thickness stretching, and the contact problem was
handled via linear solution of application of a distributed load. Many simplified models, such as the
ring on an elastic foundation or simple shells of revolution (see the works of Padovan 1975, Padovan
1976, Padovan 1977, Kennedy and Padovan 1987, and Brockman et al. 1992) have been used for
analytical and finite element dynamic analyses, usually employing the Galilean transform (Sve
and Herrmann 1974) in concert with traveling load methods. Others have used three-dimensional
finite elements (Kennedy and Padovan 1987, Brockman et al. 1992, Wu and Du 1995) having, to
varying degrees, simplified material models. Such simplifications often take the form of generating
single-ply models having “equivalent orthotropic” properties or just including fewer plies in the
model than exist in the actual tire. Others simplify the finite element itself, as did DeEskinazi
et al. (1978), who used flat triangular plate elements to model the radial tire in contact with a
flat surface. Tire contact has been handled in a numBer of ways, including gap elements in concert
with three-dimensional finite element models (Kennedy and Padovan 1987), traveling loads (as
mentioned above) and boundary condition modification schemes (Wu and Du 1995). Incorporation

of the viscoelastic properties of rubber, not included herein, has also been done using the finite
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Figure 7.1 Typical bias-ply aircraft tire indicating complexity of construction

element method (see, e.g., Padovan 1976 and Kennedy and Padovan 1987). It is clear that the
complex three-dimensional structure of the tire presents a formidable challenge to two-dimensional
finite element analysis. The finite element model developed in Chapter IV is now applied to the

modeling of the aircraft tire.

The aircraft tire (Figure 7.1) is a toroidal shell of non-circular cross-section. Furthermore, it
may be described as a laminated shell, owing to its corded-rubber ply construction. The structure
is complicated by the presence of bead rings and tread grooves, as well as by the varying thickness
of the cross-section in the meridional direction!. The thickness, number of plys, ply orientation,

and constitutive properties all change in the meridional direction.

1Throughout this chapter, “circumferential” refers to the z, or “rolling” direction, while “meridional” refers to
the y, or “minor radius” direction.




Figure 7.2 Shell of revolution with irregular cross section

The two types of mechanical loads on the tire are inflation loads and loads caused by contact
with a surface. Inflation forces are easily described by the “tire pressure”, while the loads due
to contact depend on many factors, including aircraft weight, braking, pavement roughness and
flexibility, tire camber, turning loads, etc. One objective of the current research is to demonstrate

an initial capability in analyzing the tire with respect to these loads.

7.1 Tire Geometry

The tire geometry is toroidal, but of non-circular cross section. For this reason, the curvature

terms of the circular torus gi{'en by Eqns (3.66), below (with 6 replacing y?), are not valid:

0 —sin §

kl = m (71&)
0 1
k2 cos? (7.1c)

b= (R —y3sinf)

In the tire cross section, the minor radius of the torus (y® = r) is now a function of the meridional

angle (y? = 6), as shown in Figure 7.2. This leads to very different curvature terms. Consider the
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coordinate transformations of the circular torus from Chapter I11:

X! = (R - y3siny?)siny’
X? = (R~ y®siny?) cos y*

X3 = —y3 cosy?.

Now substitute # for y? and r(9) for y*: : ’

X! = (R—rsinf)siny*
X? = (R—rsinf) cos y'

X3 = —rcosé.

(3.38)

(7.2)

There are now only two independent variables in y-space, since r is now dependent upon 6. This

leads to a 3 x 2 Jacobian matrix of (cf. Eq 3.46)

(R—rsinf)cosy’ —(r'sinf + rcosf)sin y?
[Ul=| —(R—rsinf)siny’ —(r'sinf+rcosf)cosy® |-

0 —r'cos@ + rsiné

where v/ = dr/df. From Eq (3.44) one obtains

a; = (R—rsinf)cosy’ e; — (R~ rsinf)siny' e,
az = —(r'sinf + rcosf)siny' eq — (' sind + rcosf) cos y' ey

+ (=7’ cosf + rsinb) es
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and, since

lla1|| = Vai-ag = R —rsinf (7.5a)
llaz|| = Vaz-az = Vr'2 + 2, (7.5b)
the unit vectors j; and j2 are given by (cf. Eqns 3.41)
j1=a1/||a1|| = cosy' e —siny' e, (7.6a)
i2 = ag/||as]| = — (7' sin @ + 7 cos ) sin y 1 — (r'sin @ + 7 cos 8) cos y* e
4 /TIZ + P2 A /7.12 + p2
(=7’ cos + rsinf)
The normal vector js is immediately available through
1)
... siny! (—r' cos @ + rsin 6) cosy' (—r' cos B + rsinf)
—_ X —_ eq — e
Ja=n XJ2= o7 g 12 1 75 1 2 2
r sinf + rcosf
—_ —°——r,2 ._*_—7-2 €e3. (77)
From Eq (3.60) the following new curvature matrices are evident
[ 0 rcosf + r'sinf _—rsin9+r’cos€ |
P2 + pl2 P2 + 2
;o
K9 = | — (rcos 6 + ' sin 6) 0 0 , (7.8a)
r2 + 2
—rsinf + 7'
rsinf + 7/ cos § 0 0
L 72 4 /2 _
and }
0 0 0
[KO _ 0 7'2 + 2 7'/2 —r T'/I (7 Sb)
2= 0 2 + P12 ’
0 r2+3r'2——rr" 0
72 4 72 i
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Once again, these rates of change of unit vectors are mathematically correct, but not dimensionally
consistent (i.e., they are not the physical curvatures). Again each matrix is multiplied by the

reciprocal of its respective scale factor:

1/hy = 1/\/g11 = 1/||a1|| = 1/(R — rsin6) (7.9a)
1/hs = 1/\/922 = 1/||az|| = 1/v/72 + 2, (7.9b)

leading to the physical curvature matrices (cf. Eqns 3.66)

i 0 rcosf + r'sind __ —rsinf+r'cosf
(R—rsin0)\/r2 + 2 (R — rsin8)V/r2 + r'2
K], = | - (rcos@ + r'sin 6) 0 0
® (R—rsin0)v/r2 + 12
~rsin® 4+ r’ cos @ 0 0
L (R—rsinf)y/r? 4 72 _
(7.10a)
and
0 0 0
P24 2p2 —pp
[K3) @»=10 0 _T%W (7.10Db)

P24 272 —ppl

(r2 4 172)312 0

From Eq (3.65), it is evident that the physical curvatures for a shell of revolution having a smooth

(but otherwise arbitrary) cross-section are

—rsin@ + r' cos 8
(R—rsinf)v/r? + 72

2 2 "
o _r+2r" —rr
ky = —(rz T 2l (7.11b)

k'(ll:

(7.11a)

X0 rcosf + r'sind

5 =
(R —rsin0)\/r2 412,

(7.11¢)

where r’ = dr/df. Note that for » =constant, which corresponds to the circular torus, Eqns (7.11)

degenerate to Eqns (7.1).
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Figure 7.3 Piece-wise continuity of second derivative associated with classical cubic spline

For the finite element model, the generatrix (tire cross-section) for the shell of revolution is
represented by a tension spline (Renka 1987) connecting user-defined nodes along the cross section.
Rotating this generatrix about the origin of the major radius (axle) of the shell then generates the
tire’s reference surface. The tension spline is used because, in addition to having the continuous
second derivative of the classical cubic spline (which results in continuous curvature), it may be
formulated to preserve convexity of the curve over an interval. That is, the tension may be chosen
such that the interpolant may not “wiggle” (have an inflection point) between data points. This
results in a smooth generatrix, making it suitable for modeling the tire cross section (Kim and Noor

1990). An overview of the tension spline technique follows.

In the classical implementation of the cubic spline (see, e.g., Hornbeck 1975, p. 47), the
second derivative of the cubic interpolant, g(x), is piecewise linear and continuous on the interval
of interest, as shown in Figure 7.3, and the value of the second derivative at any point z, where

z; < & < &4 is given by

g"(z)=g"(z:) + % 9" (zig1) —¢"(2:)] - (7.12)




Consider the interval [z1, 3], where the associated data values and their derivatives are y1, ¥z, ¥},

and y}, respectively, and y = dy/de. Furthermore, define
h=zy—-21, b=(z2—2z)/h, s=(y2—y1)/h, di=s—y;, da=ys—s (7.13)

By enforcing continuity of the first and second derivatives of the interpolant at the data points, the

interpolating function on the interval [z1, 2] is given by
g(2) = hy — hlyhd + (di — 2d2)b% + (d2 — dy b2 (7.14)

Eq (7.14) represents the classical cubic spline.

In contrast, Renka’s implementation of the tension spline applies a tension factor, o, to each

interval along the spline, such that
g € Cz1, z,), and (7.15a)

g — (ox/h)?g' = 0in [z, 2r41], (7.15b)

where hy = 41 — 2 is the length of the & interval. From Eq (7.15a), the interpolant is a
function whose first derivative is continuous on the entire interval of interest. From Eq (7.15b), it
is evident that as oy, the tension factor on the k*® interval, goes to zero, g""” = 0, or g is a cubic

function. That is, a tension of zero corresponds to the classical cubic spline of Eq (7.14). On the

other hand, for g} > 0, one obtains (from multiplying Eq 7.15b by (hx/o)? and integrating twice)

(hi/or)?d" — g = c1z +ca, (7.16)




where ¢; and cs are constants of integration. That is, as o) gets large, the first term of Eq (7.16)

vanishes and the interpolating function, g, tends toward a linear function. In other words, for a

sufficiently large value of o) (tension), the interpolant is simply a straight line connecting the two

data points. Consider again the interval [z1, 23], with associated data values and their derivatives

are Y1, ¥, ¥i, and yh, respectively. Furthermore, define
sinhm(z) = sinh(z) — z, coshm(z) = cosh(z) — 1
E = coshm?(¢) — sinhm(c) sinh(o)

a3 = o coshm(o)dy — sinhm(e) (di + d2)

ag = o sinh(o)dy — coshm(o) (d; + d3).

Then the form of the interpolating function, based upon Eqns (7.15), is

9(z) = y2 = ¥hh b+ h/(d E)[a1 coshm(ob) — a3 sinhm(ob)].

(7.17a)

(7.17b)
(7.17¢)

(7.17d)

(7.18)

Renka’s technique uses an iterative procedure to satisfy certain user-defined conditions on the

interpolant with the minimum tension, o, necessary. The interested reader is referred to the

reference of Renka (1987) for the details of the algorithm.

The FORTRAN implementation of this technique downloaded from the world-wide-web site

http: //netlib.att.com/netlib/master/readme html

(7.19)

provides for calculation of the derivatives of the fitted curve at any point along the curve, easing

the formulation of Eqns (7.11).
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Figure 7.4 Connecting a mesh to itself to form a continuous shell

7.2 Connected Meshes

To adequately model the tire geometry, the computer program must have features allowing

the mesh to be connected along the curves z = 0 and £ = Zpax as in Figure 7.4. That is, the

mesh must be capable of being “closed” into a continuous shell. Though not required for the tire

model, a more general modification was made to the program which includes the aforementioned

feature along with the ability to connect the mesh along the curves y = 0 and y = ymay, as well

as simultaneously connecting the mesh along both sets of curves (as would be done to model an

inner-tube, for example).

It is important to note that connecting the mesh affects the bandwidth of the symmetric-

banded system of equations solved to find nodal displacements (Eq 4.111). The half bandwidth,

hbw, of the system of equations is given by

hbw = max (max (B) — min (B)); + 1,
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Figure 7.5 Unconnected 2 x 5 mesh indicating degrees-of-freedom associated with element 10

where A = {1,2,3,..., Nele}, Nele being the number of elements in the mesh, and B is the set
containing all DOF numbers associated with the nodes of element i. For the four-noded, 44-DOF
elements arranged in an ‘unconnected’ rectangular mesh (as would be used with a shell panel or
flat plate) having M rows and N columns of elements, the half bandwidth of the equations will be
11(3 + N). (Note that the bandwidth depends only on the number of columns in the mesh. This
is due to the convention of numbering nodes consecutively along the z-direction.) As an example,
consider element number 10 of the unconnected mesh? of Figure 7.5. For this case Nge = 10,
A ={1,2,3,...,10}, and B = {111,112,113,...,132} U {177,178,179,...,198}, yielding a half

bandwidth of hbw = (198 — 111) + 1 = 88.

As will be shown, connecting the mesh has the following effects: (1) the number of nodes and
degrees-of-freedom are always decreased while (2) the bandwidth of the equations almost always

increases. This penalizes the solution algorithm, in that the expense of solution (in terms of number

2For this type of mesh, any element could be chosen to calculate the half bandwidth.
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of calculations required to solve the system of equations) is strongly related to the half band-width
of the equations. Letting €; and é; be the “expense” of solution for two systems of equations having

half bandwidths b, and b,, respectively, leads to (Cook et al. 1989, p. 45)

& b\’

For example, doubling the half bandwidth of a system of equations results in a quadrupling of the

number of calculations required to solve it.

Now consider the effect on the half bandwidth of joining the mesh in three different ways. The
discussions here focus on the effect of the connections on the bandwidth of the system of equations
that yield the solution to the finite element problem. Another consideration, while not discussed
here in detail, is the effect on “book-keeping” tasks: when node numbers are reassigned, care must

be taken so that the boundary conditions, loads, and degrees-of-freedom are applied correctly.

7.2.1 The z-connected mesh.  Again, consider the mesh of Figure 7.5. If the ends of the
mesh corresponding to 2 = 0 and & = Zyax are connected, a strip is turned into a ring. This is
depicted in Figure 7.6, which also shows the effect on the node numbering. It is this connection
scheme that is used in modeling the tire in subsequent sections, where z is the circumferential
direction and y is the meridional direction. In an M x N mesh of elements, the number of nodes is
reduced by M + 1 and the number of DOF by 11(M + 1). The half bandwidth of the z-connected
mesh is 22N. It is a simple exercise to show that for N > 3, this mesh connection increases the

bandwidth by a factor of 2N/(3 + N) and, in the limiting case of N — oo, doubles it.

7.2.2 The y-connected mesh.  Again, this type of mesh connection is not required to form
the tire model, but has application to other geometries, and so is included here for completeness.
To see the impact of connecting the mesh along y = 0 and ¥ = yYmax, again consider the flat mesh

of Figure 7.5. If the mesh is “rolled up” in the y direction, a tube is formed, as shown in Figure 7.6.
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Figure 7.6 Mesh joined along constant z coordinate curves

The figure also indicates the node numbering changes that occur as a result. Again, connecting
the mesh does not change the number of elements but, for an M x N mesh, reduces the number of
nodes by N +1, and the number of DOF by 11(N +1). The half bandwidth for this arrangement is
11(1+ M — N+ MN). For M > 2, the effect of the y-connection is to increase the half bandwidth
by (1+M — N + MN)/(3+ N). This factor approaches (M - 1) as N — oo. So whereas the
growth in bandwidth is limited to a factor of 2 in the z-connection case, it is not so limited in this

case.

7.2.83 Connecting in both directions. By taking the rolled up mesh of the previous section
and joining the free ends, the mesh is closed in both directions forming a circular torus (Figure 7.8).
In this case, the number of nodes in an M x N mesh is reduced by M + N + 1, the DOF by
11(M + N + 1), and the half bandwidth is simply 11M N. Any practical mesh will have a larger

bandwidth than its unconnected counterpart by a factor of MN/(3 + N ). Like the y-connected
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Figure 7.7 Mesh joined along constant y coordinate curves

| Effect on M x N mesh || z-connected | y-connected | bothzandy |
Reduction in Nodes M+1 N+1 M+N+1
Reduction in DOF 11(M + 1) 11(N +1) 11(M 4N +1)
Increase in hbw 2N/(3+N)* | 1+ M —-N+MN)/(3+N)* | MN/(3+ N)

%For N > 3

bFor M > 2

Table 7.1 Effect of different mesh connection schemes on number of nodes, number of DOF, and
half bandwidth of system of equations for a mesh of M rows and N columns

mesh, the half bandwidth can grow quite large: it approaches M as N — oo, and becomes infinite

as M — oo.

The results of connecting the finite element mesh to itself in these three ways are summarized

in Table 7.1.

7.8 The Shuttle Tire

The nose wheel tire of the Space Transportation System or “Space Shuttle” is examined in the

current research. The tire is modeled as a two-dimensional reference surface, and the ply thicknesses,
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Figure 7.8 Mesh joined along both constant z and constant y coordinate curves

ply constitutive relations, and ply orientation angles are allowed to change from element to element
in the meridional direction (elements in the circumferential direction have identical properties).
The tire’s construction details are described in the work of Kim and Noor (1990) whose results are

used for comparison purposes in the current research.

7.8.1 Inflation. In the current work, a pressure loading is applied using equivalent nodal
loads. The shape functions are used to calculate the applied nodal loads in an potential energy
equivalent sense. That is,

{re} = | [N]T{P}dA4 (7.22)
44x1 A 44x5 5x1

where {r.} is the vector of equivalent nodal loads for the element, [N] is the matrix of shape

functions (Eq 4.83), and

{P} = {pu, P, pu,0,0} (7.23)
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is the pressure loading vector. The two zero entries in the pressure vector correspond to loads
associated local rotations (moment-like quantities), which are not present in a pressure load. In
keeping with the total Lagrangian formulation, the components of {P} must always be expressed
in terms of coordinates associated with the initial (undeformed) configuration, represented by the
{j123}-basis (recall Figure 3.7). Since js is initially everywhere normal to the reference surface,
as is the pressure load, the pressure vector originally has the form {P} = {0,0,p,,0,0} = P js,
where P is the magnitude of the pressure. As the reference surface goes through its movement, the
normal to the surface is represented by the basis vector i3, and the pressure, which remains normal

to the deforming surface, becomes {P} = Pij. The basis vector i3 is related to j3 by (Eq 3.104)
i3 = T31jJ1 + T2 j2 + Thajs, (7.24)

where the T3y, are available through the relationships of Eqns (3.92). Hence the direction of the nor-
mal pressure load can be “updated” at each increment by expressing it in terms of the undeformed

reference surface through
P = Piz = P(T31j1 + Ts2j2 + T33j3) = Puj1 + Py j2 + Pu s, (7.25)

where

Pu = PT31, Pv = PT32, Pw - PT33. (726)

For this formulation, the elements are always rectangular (in the curvilinear coordiﬁa,te sys-
tem) with dimensions 2a x 2b, and substituting Eqns (7.23) and (4.83) into Eq (7.22) leads to the

following equivalent load vector:

{re} = {abpy, aszu/3, ab2pu/3, abp,, a2bpu/3, ab2p0/3, abp,, aszw/S, abzpw/3, 0,0,
44x1 :

abp,,, —aszu/B, ab2pu/3, abpy, —aszv/3, abzpv/3, abpy, —a2bpw/3, ab’py, /3,0, 0,
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Figure 7.9 Estimating the effect of tire deflection on tire pressure

abpy, —aszu/3, —abzpu/3, abpy, —aszv/3, —ab2p0/3, abpy,, —aszw/3, —abzpw/3, 0,0,
abpy, aszu/3, —abzpu/3, abp,, asz,,/3, —absz/B, abpy,, aszw/3, —abzpm/3, 0, O}T.

(7.27)

Some scenarios benefit more from this updating scheme than others. In fact, one can easily
visualize geometries for which such an updating scheme is superfluous (e.g., inflation of an isotropic
sphere). In the following results, it will be noted for each case whether the updating scheme was

used.

Of course the magnitude of the internal pressure changes with tire deflection as well, but this
effect can be estimated using the method depicted in Figure 7.9. In this figure is a toroidal shell
having the cross section of the shuttle nose wheel tire. The maximum deflection of the tire, 6.y,
. is about 153 mm and, for most tires, deflections exceeding 40 % are rare. A 40% deflection for this
tire is 0.40 x 153 mm ~ 62 mm. Using a graphical plot of the shuttle tire cross section, the following
relationship was developed to estimate the area of the region denoted A in the figure versus the

deflection é:

1707 [° . 7w\ 5
A(b) = 18 /0 sin (ﬁé) dé ecm®. (7.28)
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Using this relationship, the volume of region V' may be estimated (via the geometric relationships

vo=[(n-2)ac] () e am

where the angle 6 of Figure 7.9 is given by

of the figure) as

0(6) = 2 cos™* (1 — 6/R). (7.30)

To calculate the change in tire pressure, the air in the volume V is placed in the truncated volume
of the tire, V, where

V(6) = Vior — V(6), ' (7.31)

and Vi is the initial volume of the undeflected tire. Using the equation of state for a perfect gas,

a very conservative estimate of the pressure change AP can be made, given by

AP(6) = % - %, or (7.32a)
AP(§) = RT (‘7}; - %) , (7.32b)

" where R is the gas constant for air and T is its absolute temperature. The result of this equation
is plotted in Figure 7.10. Note that this estimate is very conservative for a number of reasons.
First, it is assumed that the tire may not flex to accommodate the pressure increase. Second, it is
assumed that the temperature of the air does not increase as the pressure increases. Finally, there is
additional initial volume available that is being neglected: the volume shown in Figure 7.9 resulting
from the area of region B. This volume is present due to the concave shape of the wheel at the
wheel’s outer radius. Because the exact shape is unknown, the attendant volume was not included.
Had it been, the pressure change would have been smaller still. From Figure 7.10, the percentage

change in pressure is of order A Ppax % = O(6/10), where § is the deflection in millimeters. In view
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Figure 7.10 Conservative estimate of increase in shuttle nose wheel tire pressure due to inflation

of the conservative assumptions, the actual change would be considerably less, hence no attempt is

made to adjust the pressure magnitude during tire deflection.

The results of the finite element analysis for an inflation pressure of 2.206 MPa (320 psi) are
compared to experimental results presénted by Kim and Noor (1990) in Figure 7.11. The reference
surface is chosen to satisfy three criteria: (1) along the meridian, the reference surface should be
as near the middle of the laminate as possible, (2) the reference surface should be at the middle
of the ply in which it resides, and (3) the outer surface of the elements should match that of the
actual tire and be as smooth as possible. Criterion (1) arises from the desire to free the warping
functions in the outer plys; The ply coﬁtaining the reference surface must be constrained such that
the warping functions are zero at the reference surface (see the discussion of Section 3.6). Criterion
(2) reflects that fact that as the reference surface approaches a ply interface, the warping function
equations (Eéns 3.140) have no unique solution, hence the middle of the ply is a desirable location
(see Section 3.6). The third criterion is desirable from the standpoint of tire contact studies vas, in
reality, the outer surface is the contact surface. In the contact algorithm, the reference surface is

used as the contact surface, then corrected for the thickness of the tire above the reference surface as
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t = 15.2mm

Figure 7.11 Finite element mesh vs. actual tire cross-section indicating element numbering and
typical element thicknesses

well as the change in that thickness. Since the reference surface is continuous and smooth, criterion
(3) ensures that the undeformed tire thickness above the reference surface is nearly uniform about

the meridian.

Trying to satisfy these criteria leads to the element choices depicted in Figure 7.11, where ( is
the non-dimensionalized meridional coordinate, expressing the the fraction of the total curviﬁnear
length along the meridian of the reference surface. The overall mesh employed in the inflation study
is shown in Figure 7.12. The mesh employs 832 elements, 858 nodes, and has 9438 total DOF. The
material properties useci in the finite element model are presented in Appendix F. The boundary

conditions for the analysis are given by

at y = 0, clamped: all DOF fixed (7.33)

at y = 9.13mm, clamped: all DOF fixed
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Figure 7.12 Three views of the shuttle nose wheel tire mesh; The figure does not reflect the fact
that the finite element is actually bi-curved, not flat.

at y = 16.60 mm, clamped: all DOF fixed
at y = 439.29 mm, clamped: all DOF fixed
at y = 446.75 mm, clamped: all DOF fixed

at y = 455.88 mm, clamped: all DOF fixed.

These conditions reflect the fact that the first and last three (circumferential) rows of nodes are
fixed at the tire/rim interfaces (see Figure 7.13). A convergence tolerance of 10~% % was used in
the analysis, and the inflation loads were applied in six equal increments. The pressure vector
directions were not updated in this portion of the study. The results of the inflation study are
depicted in Figure 7.14. The “uncorrected” deflection represents the deflection of the reference
surface, which, ignoring any thickness change, is also the displacement of the outer surface. The

“corrected” data points adjust these displacements for thickness stretching, Ah, by numerically
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Figure 7.13 Tire cross section indicating coordinate system and boundary conditions
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Figure 7.14 Finite element calculations compared to experimental (measured) values for space
shuttle nose-wheel tire. See text for discussion of error bars.
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integrating the strain, Bss(z), from the reference surface to the outer surface at each Gauss point.
That is,

ZN+1
Ah= / Bas(2) dz. (7.34)
0

The error bars on the experimental data have two sources: (1) the measured radial displacement at
a given meridional location may have slightly different values at different circumferential locations
and th¢ error bars encompass that variation, and (2) precision error is introduced in reading the
graphical data from the plots of the work of Kim and Noor (1990). In any case, the calculated
displacements are clearly less than the experimental ones. Two possible sources of this difference
are (1) any finite element solution should be somewhat stiffer than its “real” counterpart, and (2)
the present analysis models no viscoelastic properties. It is likely that the tire material exhibits
some “creep” after inflation and, depending upon when the measurements were taken, these time-
dependent properties may have influenced the result (according to DeEskinazi et al. 1978, the

majority of this creep occurs shortly after inflation).

It is important to recall that the finite element formulation calculates the thickness stretching
based upon the assumption of zero stress at the boundaries. For the tire inflation problem, this
assumption is patently false. However, the thickness change calculated by the model, generated
by the membrane stretching due to application of équivalent nodai loads, provides good results in

predicting the displaced outer surface of the tire.

Stress resultants for the finite element results are calculated by integrating the stresses through

the thickness:

ZN+1 . ZN+1 ZN+1
N, = / Ju(z)dz, Ny :/ Joa(2)dz, N, = / J33(z) dz, (7.35a)
23 B 21 21
ZN+41 ZN41 ZN+1
N:,;y = / J12(Z) dZ, Nxz = / J13(2) dZ, Nyz :/ J23(Z) dz. (7.35]:))
21 21 2
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Figure 7.15 Finite element stress resultants compared to finite element calculations of Kim and
Noor (1990)

They are then nondimensionalized by dividing by the inflation pressure, py = 2.206 MPa (320 psi),
and the tire thickness at the crown, hp = 19.05mm (0.75in). The resultants generated by the
finite element model are shown in Figure 7.15. They are compared with the results of the finite
element model of Kim and Noor (1990), who used a semi-analytic finite element model employing
moderate-rotation Sanders-Budiansky shell theory and having the following properties: (1) the shell
variables are represented by Fourier series in the circumferential direction and piecewise polynomials
in the meridional direction, and (2) the fundamental unknowns in the model are strain-resultant
parameters, stress-resultant parameters, and generalized displacements. The line thickness in the
plot reflects the imprecision in reading the graphical data. As stress-resultants are a fun(iamental
unknown in the model, it is likely that the values of Kim and Noor in Figure 7.15 are more reliable
than those of the present research, in which the stresses are tertiary quantities calculated from
strains generated by displacements. Still, the agreement between solutions is good, except near

the tire/rim interface. In this region, the element thicknesses are changing rapidly, causing erratic
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1))

Figure 7.16  Discontinuity introduced by adjacent elements of different ply lay-up; Case (A4) —
(B): adjacent elements of identical configuration; Case (C') — (D): adjacent elements
of different configuration

results. This is due to the discontinuity introduced by having different ply lay-ups adjacent to
each other at nodes. Consider Figure 7.16, which depicts the effect of this difference. Recall
that the displacements away from the shell reference surface are determined by enforcing stress and
displacement continuity at interlaminar boundaries. Therefore, the element configuration (number,
angles, thicknesses, and constitutive properties of the plys) and the displacements at the reference
surface uniquely determine the values of these through-the-thickness displacements. If two adjacent
elements have identical configurations (Case (A) — (B) of Figure 7.16), then the displacement
conditions at their common node(s) (on the reference surface) will determine the displacements
away from the reference surface at the node. Furthermore, these displacements will be identical at

the node whether it is approached from the element on the left or the right. On the contrary, if
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| Component (ij) [ 1t | 22 [ 3 [ 12 [ 23 | 13 ]

Stress J;; (MPa) 36.91 27.76 4.022 27.428 —.5976 2121
Occurs in element 16 10 3 10 10 11
Distance from ref sfc (zmm) || —0.8255 | —0.5135 | —15.93 | —0.5135 | 0.5135 0.
Strain B;; (%) 4.131 23.642 | —55.26 | —1.696 | —25.01 13.212
Occurs in element 16 16 16 3 12 10
Distance from ref sfc (zmm) || +7.247 | +7.247 | +4.128 | —18.41 | —0.5745 | —0.5135

Table 7.2 Maximum stresses and strains due to inflation of the shuttle tire model without pressure
direction updates

the adjacent elements have different configurations (Case (C) — (D) of Figure 7.16) then, while
the displacements at the common node(s) on the reference surface are unique, the difference in
element configuration will cause a mis-match in the displacement functions through-the-thickness.
Note that, unlike the problem generated by lack of element continuity seen in Section 6.4, the
element remains C' continuous at the reference surface. The effect of the mis-match is to cause
a discontinuity in the strain energy along interelement boundaries (since integration through the
thickness is included in that calculation). In qualitative terms, it should be clear that very gradual

changes in element properties are more desirable than sudden ones.

The peak stresses in the inflated tire are noted in Table 7.2. The element numbers in the table
indicate numbering from the tire/rim interface to the crown, such that element 1 is at the tire/rim
interface and elements 16 and 17 are astride the crown. The largest strains in Table 7.2 are located
in the outer ply which is isotropic rubber. It has a modulus roughly two orders of magnitude less
than that of the nylon-corded rubber of the other plys. The maximum transverse normal strain of
B3gmax = —55 % is large, but is on the order of that seen by Simo et al. (1990) in finite element

modeling of a transversely loaded rubber sphere. In that instance, strains of 55 % were seen.

Another source of the erratic results near the tire/wheel interface is that the current (dis-
placement based) model imposes a fully-clamped boundary condition at the rim, while the stress-
resultant parameters used by Kim and Noor (1990) permit non-zero stresses in the interface region.

In this displacement-based scheme, the setting of the displacements in the clamped region to zero
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| Component (i5) | 11 | 22 | 3 [ 12 [ 23 [ 13

without updated warping functions: | | | | | |

Stress J;; (MPa) 36.91 27.76 4.022 27.428 —.5976 2121
Occurs in element 16 10 3 10 10 11
Distance from ref sfc (z mm) —0.8255 | —0.5135 | —15.93 | —0.5135 | 0.5135 0.
Strain Bj; (%) 4.131 23.642 | —55.25 | —1.696 | —25.01 | 13.212
Occurs in element 16 16 16 3 12 10
Distance from ref sfc (z mm) +7.247 | +7.247 | +4.128 | —18.41 | —0.5745 | —0.5135
| with updated warping functions: || I | | [ |

Stress J;; (MPa) 36.68 27.65 4.161 27.33 —.5982 2123
Occurs in element 16 10 3 10 10 11
Distance from ref sfc (z mm) —0.8255 | —0.5135 | —15.93 | —0.5135 | 0.5135 | 0.
Strain B;; (%) 4.275 23.42 ~54.12 | —1.774 | —24.97 13.225
Occurs in element 16 16 16 3 12 10
Distance from ref sfc (z mm) +7.247 | +7.247 | +4.128 | —18.41 | —0.5745 | —0.5135

Table 7.3 Maximum stresses and strains due to inflation of the shuttle tire model without pres-
sure direction updates indicating differences causes by updating warping functions in
constitutive matrix

has the result of setting strains to zero and therefore stresses to zero. In contrast, when stress-
resultant parameters are used as fundamental unknowns (as opposed to a derived quantity) they

need not be a priori set to zero along a clamped boundary.

As mentioned in Chapter IV, the simplification incorporated by Pai and Palazotto (1995a)
in which the deformed curvatures of the [S] matrix of Eq (4.6a) are replaced by their undeformed
counterparts will now be re-examined. Recall that the [S] matrix specifies the constitutive matrix,
[®]. A comparison of the stresses and strains generated by the incorporating the simplification (the
data of Table 7.2) to those generated without use of the simplification is shown in Table 7.3. As
can be seen in the table, even with the thick shell of the tire, the effect of updating the warping
functions in the constitutive matrix is not significant. Attention is now turned to the problem of

static contact.

7.3.2 Static Contact.  The static contact analyses are developed by bringing a flat surface
(representing the pavement) into contact with the tire and moving it toward the axle incrementally

as in Figure 7.17. The contact algorithm is similar to that of Wu and Du (1995) in that it is a
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Figure 7.17 Geometry of deformed tire for contact algorithm

boundary condition modification scheme. In this first attempt at designing a contact algorithm
for this finite element scheme, two simplifying assumptions are made: (1) once in contact with the
surface, a node may not slide along the surface and (2) the contact surface is perfectly rigid. With
these assumptions, the algorithm is implemented by checking the distance between each node® and
the contact surface and then, for nodes determined to be in contact, prescribing their displacements
such that they move with the contact surface. The algorithm begins by locating the contact surface
tangent to the tire crown at a specified node; in this case, node C of Figure 7.17. The distance
from the axle of this tangent point is known, since it is merely the sum of the distance to this point
in its undeformed location, d§, and the displacement w that occurred as a result of inflation. That
is

b = df + ws. (7.36)

3In actuality, the JAGS user specifies a limited group of candidate nodes to check for contact.

7-28




The displacement of the reference surface is then incremented by an amount equal to the distance,
6*, from the contact surface in the normal direction to the closest node not yet in contact. Note

that this displacement increment is restricted by:

Smin < 8" < bmax, (7.37)

where 6min and Smax are prescribed by the user. This normal distance is calculated as follows.
Consider candidate node A of Figure 7.17. The vector to node A from the origin of the body-fixed

coordinate system (the {ei23}-basis of Figure 3.5), is given by

DIl = IR+ [[E], (7.38)

where R is the vector from this origin to the center of the tire cross-section, and T is the vector
from that point to the displaced nodal location. (Both R and f lie in the meridional plane of point
A). The choice of R is arbitrary (in terms of its length), but for this research R. was chosen such
that |[r|ls=0 = [|r||o=z. The vector T is easily generated by knowing the original coordinates and
the subsequent displacements ua, v4, and w4 of node A. Now note that the normal disténce from

point A to the contact surface, é., is given by

8. = 60 — 6 — ||D||(n-a), (7.39)

where é is the sum of all previous displacement increments, n is the unit normal to the contact
surface, and a is a unit normal in the direction of D. If this distance is zero (or less than zero)
the node’s translational degrees of freedom are fixed, and in subsequent displacement increments
move with the contact surface. No attempt is made to modify the slopes w, and w, at the
nodes in order to maintain an element shape congruent to the flat contact surface—only the node’s

displacements are considered. This implies that the shell surface between nodes could penetrate
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the contact surface. However, if the mesh is fine enough in the contact region, such penetrations

can be considered to be negligible.

The static contact algorithm was exercised on two tire models of the shuttle nose-wheel tire:
an axisymmetric version of the tire model used in the inflation study, and materially simplified,

but geometrically correct, whole-tire model.

The axisymmetric model of the shuttle nose-wheel tire consists of a 1 X 32 mesh modeling
the entire tire meridian (Figure 7.11). The material properties are identical to those used in the
inflation study (see Appendix F). The boundary conditions are set to represent axisymmetry:
behavior of the structure may not vary in the circumferential (z) direction. For such a model, the

boundary conditions are given by:

at y = 0, clamped: all DOF fixed (7.40)
at y = 9.13mm, clamped: all DOF fixed

at y = 16.60mm, clamped: all DOF fixed except v,

at y = 439.29mm, clamped: all DOF fixed except v,

at y = 446.75 mm, clamped: all DOF fixed

at y = 455.88 mm, clamped: all DOF fixed

all other DOF axisymmetric: u =4z =ty =V =ws =75 =0

Since the loading is also axisymmetric, the “contact surface” for this case is best described as a
flat hoop encircling the outer diameter of the tire, tangent at the crown, as shown in Figure 7.18.
In the local sense, this approximates tire contact with a flat surface, though in the global sense,
the load closely models the use of a device known as a “bead-popper.” This device consists of an
inflatable band which is placed around the circumference of an uninflated tire having a large gap

between the tire bead and the rim. Such a gap prevents the tire from being inflated. By inflating
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contact surface

Figure 7.18 Configuration of axisymmetric loading case for contact study

| Component (ij) | 11 | 22 | 3 | 12 [ 23 | 13 |
Stress J;; (MPa) 46.17 | 32.54 | 4.157 | 32.06 | —.6457 | .1625
Occurs in element 16 8 3 16 10 11
Distance from ref sfc (zmm) || —0.8255 | —0.4994 | —15.93 | —0.8255 0. 0.
Strain By; (%) 4.138 2892 | —68.15 | —1.809 | —27.13 | —11.59
Occurs in element 16 16 16 13 11 11
Distance from ref sfc (zmm) || —11.75 | +7.247 | +4.128 | 47.839 | —0.5440 | —0.5440

Table 7.4 Maximum stresses and strains due to inflation of the axisymmetric tire model without
pressure direction updates

the bead-popper, the circumference of the tire is pinched, pushing the tire beads outward and into

contact with the wheel rim. This allows the tire to then be inflated (Hensley 1995).

In the numerical study, the tire is first inflated to 2.206 MPa (320 psi) in four equal load incre-
ments without using the pressure vector updating scheme previously described. The convergence
tolerance for inflation is ‘10_8%. The peak deflection at the crown, not corrected for thickness
stretch, is 15.56 mm. This gives a maximum permissible deflection of about 153 mm (deflection to
the wheel rim). The percent-deflection values given herein refer to percent of that maximum deflec-

tion. The maximum calculated stresses and strains due to inflation are given in Table 7.4. Again,
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Figure 7.19 Displacements of opposing nodes on full tire model during inflation; displacements
exaggerated—actual in-plane displacement is < 0.5 mm

thé largest strains are in the isotropic rubber outer ply. Note that the values in Table 7.4 are larger
than those of Table 7.2. This is due to constraining the tire from warping in the circumferential
direction. Due to the highly anisotropic layup of the tire, it tries to warp. This is seen in the Whole
tire model. Nodes on opposite sides of the tire cross section move in opposite directions as shown
in Figure 7.19. These nodes are not free to go through this movement in the axisymmetric model,

hence higher stresses are generated.

Having inflated the tire, the axisymmetric displacement (load) is applied, and the boundary
condition modification scheme previously described is implemented. In this portion of the analysis,
the convergence tolerance is 1075 %, and the prescribed minimum and maximum increment sizes
for deflection are 1mm and 3mm respectively. The surface-normal (footprint) load is found by
taking the component of the total load on a node (found from Eq (4.108)) that is normal to the
surface, and subtracting from it the component of the internal pressure in that direction?. Recall
that the magnitude of the pressure is assumed constant with deflection.). For example, consider the
point on the tire crown tangent to the contact surface at the first instant of contact. At this first

instant, the contact plane is merely “attached” to the tire—there is no deflection due to contact.

“Since no attempt is made to conform the deformed element to the contact surface (by, e.g., manipulating w,»
and w,y), note that the pressure direction normal to the element (in the updated pressure scenario) may be in a
slightly different direction than the normal to the contact surface.
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Figure 7.20  Surface-normal loads (Newtons) vs. nondimensionalized meridional coordinate (¢) at
nodes on axisymmetric tire slice without update of pressure direction; from left-to-
right, top-to-bottom, deflections are: (1) 3.3%, (2) 7.1%, (3) 14%, (4) 19%, (5)
25%, (6) 28%

The normal component of the nodal load, Ly, is exactly equal to the normal component of the
pressure load, Py, hence the surface-normal (footprint) load, Fy = Py — Ly is zero. Now say the
contact surface moves a small amount, §, into the tire, but still with only one node in contact. The
normal nodal load in the w direction is now calculated to be slightly less, say Ly — AL. This yields

a footprint load of Fy = Py — (Ly — AL) = AL.

Refer now to Figure 7.20. It shows the surface-normal loads and the growth of the footprint re-
gion. The noticeable asymmetry in the magnitude of the loads is a by product of the cross-sectional

anisotropy. The tire material warps slightly in the meridional direction within the constraints of
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| Component (i) [ 11 ] 22 ] 3 | 12 | 25 [ 13 |

Stress J;; (MPa) 47.45 33.14 4.508 32.93 —.6536 .1648
Occurs in element 16 8 3 16 10 11
Distance from ref sfc (zmm) || —0.8255 | —0.4994 | —15.93 | —0.8255 0. 0.
Strain B;; (%) 3.680 | 3057 | —72.95| —1.783 | —27.53 | —11.75
Occurs in element 15 16 16 13 11 11
Distance from ref sfc (zmm) || —10.29 | +7.247 | +4.128 | +7.839 | —0.5440 | —0.5440

Table 7.5 Maximum stresses and strains due to inflation of the axisymmetric tire model with
pressure direction updates

the boundary conditions imposed. That is, while the tire may not deform asymmetrically in the

circumferential direction, it is free to do so in the meridional one.

The same contact problem is run again, but this time the pressure vector direction-updating
scheme described in Section 7.3.1 is used both in inflating the tire and during'deﬂection due to
contact. Again, four equal increments of pressure are applied, with the pressure vector directions
updated at each iteration of each increment. Once again, a convergence tolerance of 1072 % is used
for inflation. The peak deflection in this case (not corrected for thickness stretch), at 13.7mm,
is nearly two millimeters less than the previous case, though the average difference in inflation
displacement around the merfdian is only 2.9%. The updated-pressure model exhibits about 10 %
greater deflection in the sidewall area of the tire, and about 10 % less deflection in the crown (tread)
area of the tire. The maximum stresses and strains due to inflation are shown in Table 7.5. Note
that the maximum stresses and strains observed in this case are slightly greater than the previous
case, where the pressure loading vector direction was not updated. Once again, the largest strains

are observed in the outer ply, which is isotropic rubber.

Applying the axisymmetric load to the inflated tire results in the surface-normal loads shown
in Figure 7.21. The convergence tolerance, minimum displacement increment, and maximum dis-
placement increment are 107%%, 1 mm, and 3 mm respectively. The maximum displacement for
this analysis is about 151 mm, and the percent deflection figures refer to this amount. Again the

growth of the footprint region can be seen, as can the marked increase in the loads near the footprint
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Figure 7.21 Surface-normal loads (Newtons) vs. nondimensionalized meridional coordinate (¢) at
nodes on axisymmetric tire slice with updated pressure vector directions; from left-
to-right, top-to-bottom, deflections are: (1) 3.3%, (2) 6.7%, (3) 14%, (4) 18%, (5)
24%, (6) 28%
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Figure 7.22 Four deformed geometries of axisymmetric tire model with updated pressure vectors;
from left-to-right, top-to-bottom, deflections are: (1) 14%, (2) 18%, (3) 24%, (4)
28 %; dotted outline indicates uninflated tire geometry

edge as 30 % deflection is approached. This is a phenomenon that has been observed experimentally
{Mayer 1995). Some deformed tire geometries are shown in Figure 7.22, demonstrating the ability

of the algorithm to maintain an approximately flat contact surface throughout the deformation.

Having considered the axisymmetric model, a model representing the whole tire is now con-
sidered. Recall that several assumptions in the theory of Pai and Palazotto (1995a) have been

made which impact analysis of thick shells undergoing large deflections:

1. The trapezoidal cross-section effect has been neglected, hence the kinematics of Eqns (3.119)

are not “true” shell kinematics.

2. Thickness stretching has been decoupled from in-plane strains in the strain displacement

equations of Eqns (3.131).

The effect of the second assumption is known (see Eq 3.120), but the effect of the first assumption

is more difficult to quantify. Recall that the thickness stretch function, Gg), is given by G3 =
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Including the effect of G;(,f) on the in-plane strains will require including terms like Gz, and G3 4.

From Eq (3.153), it is evident that this will result in a need for terms such as 74 ze, 74,5y, €tc.

The current formulation will not allow for such terms, as the shape functions are bilinear for the

transverse shears and thus are not sufficiently differentiable to generate second derivative terms.

Moreover, the solution to that problem is not to use hermitian shape functions (as are used for u,

v, and w). This was attempted under the current research, but it was found that the stiffnesses

associated with degrees of freedom like 74 . are so small as to cause ill-conditioning of the stiffness

array. From this it can be seen that one potential solution to the problem of including higher

order derivatives could be the addition of mid-side nodes having degrees-of-freedom 44 and 7vs.

This would allow the use of a higher order shape function without including the low stiffnesses

associated with the derivatives of the transverse shear. Introducing the coupling between thickness
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Figure 7.23  Full tire undergoing contact at 28.5% deflection; lower right is view of mesh; upper
right is view of meridional section at maximum deformation; left is deformed tire,
with contact surface at bottom of figure

stretching and in-plane strains, as well as inclusion of “true” shell kinematics are potential areas of

future research.

Inclusion of these simplifying assumptions decreases the generality of the finite element model
somewhat, requiring simplification of the whole-tire model for the contact study: a three ply lay-up
(rather than the 13-16 ply lay-up used to this point) of orthotropic material having the properties of
nylon—cordéd rubber will be used, as will a coarser mesh. These simplifications allow for successful
demonstration of an initial capability of whole-tire contact with a flat surface. The full tire is
modeled as a 16 x 14 mesh (16 elements in the z direction and 14 in the y, for a total of 224
elements). The mesh and deformed geometry of the tire is shown in Figure 7.23. As has been
mentioned, the tire is materially simpler than the full tire model used fo‘r the inflation study. It is a
three ply laminate of specially orthotropic plys having orientations [29.8/90/-29.8]%. The material

properties are given in Section F.2 of Appendix F. These properties are typical of nylon-corded

5The 29.8° plies are representative of typical ply orientations in the actual tire.
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Figure 7.24 Surface-normal nodal loads and deformed geometry associated with the five nodes in
contact; angle ply tire at 28.5% deflection

rubber. The tire is of uniform thickness of 25.4mm (1in), and the plys are of equal thickness.

Reducing the number of plies was found to ameliorate the convergence problem.

The tire was inflated to 2.206 MPa (320 psi), and the crown deflection at this pressure (not
corrected for thickness stretch) was 11.14mm. This yields a maximum deflection (to the wheel rim)
of about 148 mm. Percent deflection in the following refers to percentage of this maximum. The

maximum deflection achieved was 33.7% (49.8 mm), at which point the program failed to converge.

As can be seen, the gross behavior of the tire is as expected, with the bulging of the side-wall
in the region of contact. The surface-normal loads on the five nodes in contact nodes at 28.5%
deflection (this deflection was chosen for the purpose of comparing results to the axisymmetric
model) are shown in Figure 7.24. Given the coarseness of the mesh, these numbers should not be

viewed as having great accuracy.
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7.4 Summary

In this chapter the finite element model has been tailored for application to the aircraft tire: a
highly complex structure presenting a serious challenge to two-dimensional finite element analysis.
Inflation of the space shuttle nose wheel tire has been simulated and the results, corrected for
thickness stretching, correlate well to experimental results. An initial capability of analyzing the
tire with respect to static contact with a flat surface has been demonstrated using two models: (1)
an axisymmetric tire model having the same material properties used in the inflation study and (2)
a materially simplified angle-ply laminate modeling the whole tire. The simplification is the result
of an attempt to circumvent convergence problems which arose in attempting to model the full
tire in contact with a flat surface. These problems arise from simplifications made in the original

theory, and future work could be directed toward removing these simplifications.
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VIII. Summary and Conclusions
8.1 Summary

Chapter II introduced the baseline theory used in the current research, presenting it as a
geometrically exact shell theory incorporating finite deformations, linear elastic constitutive laws,
and geometric nonlinearity. Its relationship to the large body of literature on shell analysis was

described as well.

In Chapter III, the theory of Pai and Palazotto (1995a) is thoroughly described pointing out
two important shell assumptions incorporated therein: (1) the trapezoidal cross section effect has
been ignored, such that the kinematics of Eq (3.117) are not “true” shell kinematics, and (2) the
transverse normal stretch function, Gz of Eqns (3.118), is not coupled to the in-plane strains via
the strain displacement relations. The first assumption is a “shallow shell” assumption, while the
second is a “thin shell” assumption. Moreover, the current method of finding thickness stretch and
shear warping functions does not permit inclusion of either non-zero normal or shear stresses on
the bounding surfaces of the shell. The shear warping functions are described in detail along with

a needed modification. Likewise, the derivation of the thickness stretch function is presented.

Chapter IV casts the equations of the theory into finite element form, largely following the
course laid out by Pai and Palazotto (1995a). The finite element code is first exercised on a
series of linear problems in Chapter V, and geometric nonlinearity is the topic of the problems
of Chapter VI. Finally, the finite element code is applied to the complex geometry of the tire in

Chapter VII, demonstrating tire inflation and static contact of the Space Shuttle nose wheel tire.

8.2 Conclusions

The nonlinear shell theory of Pai and Palazotto (1995a) has been successfully implemented,
with some modification, into a finite element model. The significant modifications to the theory

were in the areas of the shear warping functions (Pai and Palazotto 1995a, Pai 1995), used to
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describe displacements of material points away from the shell reference surface, and in extending
the theory to the shell of revolution of arbitrary cross-section through a more general expression of

the shell curvatures.

The total Lagrangian formulation described herein shows good displacement results when
compared to experimental and other analytical work. In problems exhibiting truly large rotations,
such as the arch problem, the non-conforming 36 DOF element is inadequate due to the discon-
tinuity of the deformed curvatures at inter-element boundaries. The 44 DOF element models the
large-rotation problem well, requiring much fewer elements and allowing a much larger displace-
ment increment. When the shear warping functions were corrected, comparisons of the stress-state
generated by the finite element model with the elasticity results of Pagano indicated good agree-
ment, with the exception that the current formulation cannot match non-zero normal stresses at
laminate boundaries. In such cases, transverse normal stress calculations are incorrect, but the
global displacement field generated by the application of equivalent nodal loads can be remark-
ably good. The exceedingly complex structure of the aircraft tire is successfully modeled with the
current theory. Tire inflation data agree very well with experimental data, and feasibility of the
contact problem has been demonstrated with a materially, but not geometrically, simplified full
tire and with an axisymmetric strip representing the tire cross-section. These simplifications could

likely be removed if the theory were modified to eliminate these thin/shallow shell assumptions.

Future work in the tire area could be directed toward these assumptions, as well as more
contact analyses including tire camber (leaning) and yaw (turning). And, of course, the model could
be extended to dynamical analysis. Still, a caution is in order in that regard: the decomposition
scheme is computationally intensive, and methods involving the removal of the time dependency,

such as the Galilean transform, may be appropriate.
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Appendiz A. Elements of [¥]

In this appendix, the nontrivial elements of the [¥] matrix are presented. These terms
were generated using Mathematica. Here, ¥;; is represented by W (7,7). All of these entries are
ultimately described in terms of the global displacements u, v, w and the initial curvatures kY. As

an example, The entries of [¥], in their most basic form, are:

¥ (1,1) = cos (v61) e1,4 — (1 +e1) sin(v61) V61,4
W (1,2) = cos (ve1) €1,u, — (1 +e1) sin(v61) 61,0,
¥ (1,3)=— ((1 + e1) sin (v61) ')’Gl,u,y)
¥ (1,7) = cos (761) €1, — (1 +€1) sin(v61) Y614
W (1,8) = cos (ve1) €15, — (1 +e1) sin(Ye1) Ye1,0 ,
U (1,9)=— ((1 + e1) sin (v61) 761’,,,1/)

W (1,13) = cos (761) €1, — (1 + €1) sin (761) Vo1 4

¥ (1,14) = cos (Ye1) €1, — (L +€1) sin(ve1) Y610,

¥ (1,15)=— ((1 + e1) sin (761) 761,,”,3,) ' (A1)

W (2,1) = cos(7e2) €2, — (1 + €2) sin (Ye2) 62,4

U (2,2)=— ((1 + e2) sin (ys2) 762’%:‘:)

¥ (2,3) = cos (Ye2) €2, — (1 +€2) sin (v62) Yo2,4 ,
¥ (2,7) = cos(ve2) €2,y — (1 + €2) sin(762) V62,0

¥ (2,8) = — ((1+€2) sin (362) 72,0, )

U (2,9) = cos (762) €20, — (1 + e2) sin (v62) o2,

¥ (2,13) = cos (762) €2, — (1 + e2) sin (Y62) Y624




¥ (2,14) = - ((1 + e2) sin (762) 7sz,w,x)

¥ (2,15) = cos (Y62) €20, — (1+ e2) sin(v62) Ye2,u,, (A.2)

¥ (3,1) =sin(vs1) €1,y + sin (Y62) €2,4 + cos (v61) (1+€1) Y14 + cos (v62) (1+€2) Y624
¥ (3,2) =sin(v61) €14, +c0s (Y1) (1 +€1) Y614, + cos(762) (1 +€2) Y62, ,
¥ (3,3) =sin(762) €24, + cos(v61) (1 +€1) Y61, , +cos(Y62) (1 +e€2) 162,40,
¥ (3,7) = sin (y61) €1,, + sin (v62) €2, + cos(v61) (1 +e1) ¥o1, + cos (762.) (14 e2) 762,
¥ (3,8) = sin (v61) €1, +cos(v61) (1 +e€1) Vo1, + o8 (ve2) (1 +€2) 62,0,
¥ (3,9) = sin (v2) €2, , +cos (761) (1 + €1) Vo1, , + cos (v62) (1 + €2) 62,4,

¥ (3,13) = sin(761) €1,, + 5in (Y62) €20 + cos (v61) (1 + €1) Y61 4 + cos (162) (1 + €2) Y62,

¥ (3,14) = sin(ye1) €1, , + COS (v61) (1 +€1) V61,0, + COS (v62) (1+e2) V62,0,

¥ (3,15) = sin (7s2) €2,w,, + c0s(761) (L +e€1) 61,5 , +cos (s2) (1 +€2) V62,0, (A.3)
U (4,1) =k,
U (4,2)= k'l,u,,
v (4) 3) = kl,u,y

U (44)= k.,

‘I' (4, 5) = kl;u,.ry

¥ (4,7)= k1 v
¥ (4,8) = L
v (4,9) = kl,v,y

\I’ (4’ 10)= kl)v.zz




U (4,11) =k,
U (4,13) = ki,

U (4,14) = k1,
U (4,15) = k1,
U (4,16) = k.

¥ (4,17) = kl,w,xy

¥ (5,1)= ](;’z)u

U (52) =k,
U (5,3) = ks,
¥ (5,5)=kou,,

v (5, 6) = k2,“,yy

¥ (5,7) = ka2,
¥ (5,8) = kz,v,z
¥ (5,9) = k'Z,v,y

T (5,11) = ks,
¥ (5,12) = ks,
U (5,13) = ks,

U (5,14) = kyy
U (5,15) = ko, ,
¥ (5,17) = ks,

¥ (5,18) = k2w ,,

A-3

(A.4)

(A.5)




¥ (6,1) = ks ,

W (6,2)=ke,

W (6,3)=ks.,

W (6,4)=keu..

¥ (6,5) = ke,u,,

U (6,6) = kS,u,yy

U (6,7)= kg o

VU (6,8)=ke,

Y (6,9) = ke,
¥ (6,10) = kﬁ,v,zz
¥ (6,11) = ks o .,
¥ (6,12) = ko,
¥ (6,13) = ke ,,
¥ (6,14) = ke, _
¥ (6,15) = ke |
¥ (6,16) = kG,w,,,
Y (6,17) = ke u .,

U (6,18) = ke,

U (7,20) =W (8,21) = U (9,23) = ¥ (10,24) = ¥ (11,19) = ¥ (12,22) = 1

A-4

(A.6)

(A7)




To express these elements in terms of the displacements and initial curvatures, they are

written in a more mathematically tractable form as (Pai and Palazotto 1995a):

¥ (1,2)=C11/Co

¥ (1,8) = C12/Co

U (1,14) = C13/Co

¥ (1,3) = C14/Co

¥ (1,9) = Ci5/Co

¥ (1,15) = C16/Co

¥ (1,1) = (C12kd — C13kY + C15k§ — Ci6kd,)/Co
¥ (1,7) = —(C11k2 + C13kd; + C1ak] + C16k3)/Co

¥ (1,13) = (C11k? + C12kd; + Crakd, + C15k3)/Co (A.8)

¥ (2,2) = C21/Co

¥ (2,8) = Cq3/Ch

U (2,14) = Cy3/Co

¥ (2,3) = Caa/Ch

¥ (2,9) = Cy5/Co

T (2,15) = Co6/Ch

¥ (2,1) = (Cazk? — Cazk? + Coskd — Cyekd,)/Co
T (2,7) = —(Ca1k2 + Ca3kl; + Caakd + Ca6k3)/Co

L\ (2, 13) = (02116(1) + C22k21 -+ 0241(722 + ng.k'g)/Co (Ag)




T (4,2) =

U (4,8) =

CyTszkgy,

U (4,5) =

¥ (3,2) = 2C31/C

] (3; 8) = 2C32/Cy

¥ (3,14) = 2C33/Co

¥ (3,3) = 2C34/C

¥ (3,9) = 2C35/Co

¥ (3,15) = 2C36/Co

W (3,1) = 2(C32k — Ca3k? + Cask] — Ca6kly)/Co
¥ (3,7) = —2(C31kd + Ca3kd; + C4kd + Ca6k3)/Co

W (3,13) = 2(C31kY + Ca2kd; + Caakd, + C3s5k3)/Co (A.10)°

Ca1 + C3Tsakd — C3Ts3kly — CaTsoks + CaTssky

Cuag — CsT31k§ — C3Ta3kl + CyTs1 kS + CyTszkd,

U (4,14) = Caz + C3Ts1k2, + C3Taak) — CaTs1k? — CyTarkd,

¥ (4,3) = Caa

T (4,9) = Cys

¥ (4,15) = Cag

U (4,1) = Cagk3 — Cazk{ + Caskq — Cackgy + CsTaok3, — CsTaakgy, — CaTaokd, +
CyTs3k],

¥ (4,7) = —Cy1kd — Cuskgy — Cask — Cuagky — C3Ts1k3, — CsTaskd, + CaTs1kd, +
CyTiskgy,

U (4,13) = Cu1k? + Cazkgy + Caakgy + Cusk§ + CsTs1kgy, + CsTsky, — CuT1k), —

C3T3




U (4,11) = CsTs,
U (4,17) = CsTss
U (4,4) = —CqTs,
U (4,10) = —CyTsy

U (4,16) = —C4Ts3

¥ (5,2) = Cx;
¥ (5,8) = Cs2
U (5,14) = Css

¥ (5,3) = Csq — C1Ts2k + C1Ts3k, + CoTaok? — CoTa3k?

¥ (5,9) = Css + C1T51 k3 + C1Tssks — CoTa1kg — CoTa3kd;

¥ (5,15) = Csg — C1T31kgy — C1Tsaks + CoTa1 k) 4+ CoTszk,

U (5,1) = Csaks — Cssk{ + Csskf — Csekgy — C1Ta2k, + C1Tsskgg, + CaTs2kd, —

¥ (5, 7) = —-Cslkg — C53k‘g1 - C54k2 — Cssk’g -+ Cnglkgy + 01T33k2y — Cszlkgy —

CoTss3kgy,

U (5,13) = Cs1k3 + Cs2kgy + Csakgy + Csskd — C1Ta1kgy, — C1Ts2k3, + CoTs1k], +

CoTs2kgy,

¥ (5,5) = CyT5
W (5,11) = CyTsy
¥ (5,17) = CoT33
T (5,6) = —C T,

v (5, 12) = -—ClT32

(A.11)




U (5,18) = —C1 Tss (A.12)

¥ (6,2) =Cs1 — C1Ts2k) + C1Ts3kdy + CoTs2k — CoTask?
¥ (6,8) =Csg + C1T31kY + C1Ts3ky — CoTs1kS — CoTaskd,
¥ (6,14) =Ce3 — C1T31k3y — C1Ta2k + CoT1kY + CoTs2kd;
¥ (6,3) =Csq + C3Ts2k) — C3Ta3kd, — CuTs2kd + CyTask]
¥ (6,9) =Css — C3Ts1k — C3Ta3ky + CaTs1kS + CaTaskd;
T (6,15) =Cge + Ca3Ts1 kY, + C3T2ky — CyTa1k) — CyTaakd,
¥ (6,1) =Ce2kd — Co3k? + Cesk — Cokdy — C1Ta2kS, + C1Ts3kd,, + CoTaoks,
—Cy T3k, + 03T32k2y - C3T33k’gzy - C4T32kgy + C4T33k?y
¥ (6,7) =—Cerks — Co3kd; — Coakl — Cosky + C1T31kY, + C1Ts3k3, — CoTs1kS,
—CyTs3kgy, — CsTs1kg, — CsTsskd, + CaTsikg, + CaTsskdy,
U (6,13) =Co1k] + Co2kd; + Coakgy + Cosks — C1Ts1kGy, — C1TsokS3, + CoTs1kS,
+CoTaokgy, + CaTs1kdy, + CsTsok3, — CoT1 kY, — CaTak,,,
¥ (6,5) =—C1Ts1 — CaTsy
¥ (6,11) =—C Tz — CyTsz
¥ (6,17) =—C1T33 — CyT33
¥ (6,6) =C3T3s;
¥ (6,12) =C3T39
¥ (6,18) =CsT33
VU (6,4) =C2T5;
T (6,10) =CTs,

¥ (6,16) =CyTh3 (A.13)




where

T (7,20) = ¥ (8,21) = ¥ (9,23) = ¥ (10,24) = ¥ (11,19) = ¥ (12,22) = 1

Co = (1+ e1) cosve1 + (1 + e2) cos vs2

_ Ty —sinysT11
oS v6

_ Tys —sinyeTis
oS Y

_ Ty —sinysTis
Copz = ——
COS ¥g

Tll — Sil’l ’)’6T21
Coq = ————

COS Y

C _ Tlg - SiIl 76T22
="
COS Yg

Con = T13 —sin 76T23
6 =E ————
COS Y

— COS Y61

~ cos v6(1 + e2)
_ _ sinyg

~ cosvs(l+e1)
— sin Y61

= cosye(1+ e3)
— COS Y62

= cosys(1+e)

C11 = (14 1 + (14 €2) cos 162 cos 761)T11 — (1 + €2) sin ve1 cos ¥62Co1

Ci2 = (14 €1+ (1 + e2) cos ¥s2 c0s ¥61)T12 — (1 + e2) sin 761 cos 762Co2

Ci3

Cig

Cis

(14 e1 + (1 + e2) cos 762 cos 161)Tas — (1 + €2) sin 761 cos ¥62Cos
—(1+ e1) sin 61 sin ¥627%1 — (1 + €1) sin 761 cos 762Co4

—(1 + €1)sin 61 sin ve2Tha — (14 e1) sin e cos ¥62Co5

Cis = —(1+ e1) sin ye1 sinye2Ths — (1 + e1) sin ¥g1 cos ¥62C06

A-9

(A.14)

(A.15)

(A.16)




Ca1 = —(1 + e2) sin ye1 sinv62711 — (1 + e2) sin ez cos 761 Co1

Cy2 = —(1 + e3) sin 761 sinve2T12 — (1 + e2) sin 62 cos 161 Coz

Cy3 = —(1 + e3) sin 761 sinv62T13 — (1 + e2) sin 62 cos 761 Co3

Caa = (14 ez + (1 + e1) cos ez cos v61)Th1 — (14 €1) sin y2 cos 61 Cos

Cys = (1+ e+ (1 4 €1) cos 762 cos 761)T2a — (1 4 €1) sin g2 cos 61 Cos

Ca6 = (1+ ea + (1 + e1) cos v62 cos 61 )Tz — (1 4 €1) sin Ye2 cos v61Cos

Cau

Cy2

Cs1 = (1 + e3) sinv61 cos 62711 + (1 + e2) cos vs1 cos 62Co1
Cs2 = (1 + e3) sin e cos Yoo T + (1 + e2) cos v61 cos ¥62Co2
C33 = (1 + e3) sin v cos 762T13 + (1 4+ e2) cos 61 cos Y62Co3
Cs4 = (1 + €1) cos ¥y sin ve2T21 + (1+ e1) cos v61 cos ¥62Co4
Css = (1 + e1) cos ¥1 sin 'ysg’f’gz + (1 + e1) cos ¥61 cos Y62C0s5

C36 = (1 + e1) cos 761 sin 762T23 + (1 + 1) cos ¥61 cos ¥62Cos

5—2-1%15 -2 sinve1 i1 + ((1 + e1) cosve1 — (1 + e2) cos ¥62 + Co) 1?—01«31_
~(C4T31)s — ksCoT3

E& -2 sin y61712 + ((1 4 e1) cosv61 — (1 + e2) cos vs2 + Co) Coz |
2Co | 1+e;p]
—(C4T32)e — k5CaT32

Eﬁ -2 sin 61713 + (1 + e1) cosv61 — (1 + e2) cos ¥g2 + Co) Cos |
2Cy | 1+e1]
—(C4T33)z — k5C2T33

E% -—2 sin ‘)/62T21 + ((1 4 e1) cosve1 — (1 + e3) cos v62 — Co) 1?22

+(C3T31)¢ + ksC1T51

(A.17)

(A.18)




C
Cus = 05 ]

[ 2sin ve2T2a + ((14e1)cosye1 — (1 + e2)cos ez — Co)l el

ZC
+(C3T32)¢ + k5C1T32

ke1 C
046 —-i-c——- [ 2sin ’)’62T23 + ((1 + 61) COS Y61 — (1 + 62) COS Y62 — Co) 1 +022:|
+(C3T33)s + k5C1T33 (A.19)
ke
C51 :_QF 2sin ")’61T11 + ((1 + 61) COS Y61 — (1 + 62) COS Y62 + Co) 1 + &1
+(CZT31)y — k4CyT3
k
Chxo E—'ég—zo 2sin 761T12 + ((1 =+ 61) COS Y61 — (1 + 62) cos Ye2 + Co)l Fe
(CaT32)y — kaCaT3sy
k
Cs3 E—% 2sm761T13 + ((1 4 e1) cosve1 — (1 + e2) cos ¥e2 + Co) 7 + o
0 |
+(CyTs3)y — kaCyT3s
kea [ . . N Cos |
Csq = =G | —2sinvs2721 + ((1 + €1) cos ve1 — (1 + e2) cos vs2 — Co) T+ e
—(C1T31)y + kaCsT31
k62 . S 005 ]
Cys = =—E —2sinye2T22 + ((1 + e1) cos¥61 — (1 + €2) cos y62 — Co) T+ e
—(C1T52)y + kaCaTso
k62 . ~ C()s 1
C56 E—ﬁ —2sin 762T23 + ((1 + 61) COS Y61 — (1 -+ 62) COS Y62 — Cg) 1+ o
—(C1T33)y + kaC3T3s3 (A.20)
ko —ki [ . . C
Ce1 = 22C0 ! 2sin 61711 + ((1 + e1) cosye1 — (1 + e2) cos ¥g2 + Co) - +01
+(CaT31)e — (CaT31)y — kaCoTs1 — ksCyTs1
ko—ky [ . . Coz |
Ceo = 2200 L 19sin Y6112 + ((1 + e1) cosve1 — (1 + e2) cos vg2 + Co) 1 +026
L 1]




Ce3

ko — kg
2Cy

+(CyT33

_ka—ky
- 2C,

+(C5Ts1

ko —ky
2C,

+(C3T32

_ka—ky
— 2C,

+(C3T33

2sin 761713 + (1 + 1) cos 61 — (1 + e2) cos 62 + Co)
)e — (CaT33)y — kaCoTs3 — ksCyT3s3

-—2 sin ¥g2T51 + ((1 + e1) cos e1 — (1 + e2) cos 762 — Co)
)y — (C1T31) + kaC1T31 + ksCsTsy

-—2 sin 52752 4+ ((1 + €1) cos ve1 — (1 + e2) cos v62 — Co)

Yy — (C1T32)s + kaC1T32 + ksC3T3o

—2sin 6273 + (1 4 €1) cos Y61 — (1 + €2) cos Y2 — Co)

)y — (C1T33)s + ksC1T33 + k5CsT33

A-12

Cos
1+ ey

Cos

1+4e5]

Cos |

1+4+e9

Cos
1 + (]

(A.21)




Appendiz B. Mathematica! Source Files

This appendix contains selected Mathematica source code used in the theoretical development

and computational implementation of the current research.

B.1 Development of the Matriz [®]
The matrix [®] of Eq (4.12) was developed using the following code.

Write[$0utput,"Forming S-matrix..."]

s[1] = {{ 1, 0, o, z, 0, 0},

0, 1, o, 0, Z, 0},
G35},
0) 0’ 1’ o’ o, z}}

e
@
w
o
@
W
-
@
w
N
M
@
(9]
()
@
W
ke

s[3]={{614, O, G15, 0,-RKO5%G24, -RKO5*G25},
{0, G24, O, G25, RK04%xG14, RKO4*G15},

{636, G37, G38, G39, G51, 661},
{624, ¢14, G625, G15, G52, G62}}
s[4] = {{ @53, @63},
{ 654, G64}}
SBIG = Table[0,{6},{12}]

Dol SBIGL[i,jl]
Dol sBIG[[i,j+6]1]
Do[ SBIG[[i+4,j+10]]

s[11[fi,311, {i,4},{j,6} ]
s[31L[4,311, {i,4},{j,6} ]
s[41l[4,311, {i,2},{j,2} ]

Write[$Output,”Forming Q-matrix..."]

qMAT[1] = {{qB[1,1],QB[1,2],QB[1,3],QB[1,6]},
{qB[1,21,QB[2,2],QB[2,3],QB[2,61},
{qB[1,3],QB[2,3],QB[3,3],QB[3,6]},
{qB[1,6],QB[2,6],QB[3,6],QB[6,61}}

QMAT[2] = {{QB[4,4]1,QB[4,5]},
{qB[4,5],QB[5,5]}}

QBIG = Table[0,{6},{6}]

Dol QBIG[[i,j1] = QMAT[1][[4,311, {i,4},{j,4}]
Do[ QBIG[[i+4,j+4]1] = QMAT[2][[i,311, {i,2},{j,2H
Write[$Output,"Forming PHIEAT..."]

PHIHAT = Transpose[SBIG].QBIG.SBIG;
Write[$0utput,“Saving PHIHAT to ’phihat.out’..."]
Save["phihat.out" ,PHIHAT] ;

Write[$0utput,"Writing fortran form to ’phihat.f’..."]

stmp = OpenWrite["phihat.f" ,FormatType->FortranForm]

1 Mathematica is a registered trademark of Wolfram Research, Inc.
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<<Lprintphi.m

Write[$Output,"Done."]

This developed the elements of [<i>], which was integrated using Gauss quadrature to yield

[®].

B.2 Development of the Matriz [¥)

This 12 x 24 matrix of Eq (4.71) was developed using these input decks. First, the stretches
e1 and ey and their derivatives are developed.

xx1 =1 + ux - vxkO05 + w¥kO01;

xx2 = vx + uxkO5 + w*k061;

xx3 = wx - uwkkO1 - v*k061;

xx4 = uy -~ v¥k04 + wxk062;

xx5 =1 + vy + u*k04 + w¥k02;

xx6 = wy - u*k062 - v+k02;

el = Sqrt[xx1~2 + xx2°2 + xx372] - 1;

e2 = Sqrt[xx4~2 + xx572 + xx672] - 1;

evec = {el,e2}

uvec = {u,ux,uy,uxx,uxy,uyy,v,vx,vy,vxx,vxy,vyy,w,vX,¥y, XX WXy, WYy,
g4,84x,g47,85,85x,g5y}

devec = Outer[D,evec,uvec]
devec2 = Outer[D,devec,uvec]

xx1=. ;xx2=. ;xx3=. ;xx4=. ;xx5=. ;XXx6=. ;el=. ;e2=.

devec = devec /. Dispatch[{
1 + ux - v¥kO05 + wxk01 -> xx1,
vx + u*k05 + wxk061 -> xx2,
wx - u*k01 - v¥kO61 -> xx3,
uy - v*k04 + w*k062 -> xx4,
1 + vy + uxk04 + wxk02 -> xx5,
wy - u*k062 - v¥k02 -> xx6}]

devec2 = devec2 /. Dispatch[{
1 + ux - v*¥kO5 + w*kO1 -> xx1,
vx + uxk05 + wxk061 -> xx2,
wx - uxk01 - v*k061 -> xx3,
uy - v*k04 + wxk062 -> xx4,
1 + vy + uxk04 + wxk02 -> xx5,
wy - uxk062 - v¥k02 -> xx6}]

devec = devec //. {xx1°2 + xx2°2 + xx372 -> (1 + el1)"2,
xx4~2 + xx572 + xx6°2 -> (1 + e2)"2}

devec2 = devec2 //. {xx1°2 + xx2°2 + xx3°2 -> (1 + el)"2,
xx4°2 + xx5°2 + xx672 => (1 + e2)"2}

devec = PowerExpand[devec]

devec = devec /. Dispatch[{1/(1+el) -> xx9,
1/(1+e1)"2 -> xx15,
1/(1+e2) -> 1/xx16,
1/(1+e2)"°2 -> 1/xx17,
-2 k04 xx4 - 2 k02 xx6 -> xx8,
2 k062 xx4 + 2 k02 xx5 -> xx11,
2 k04 xx5 -~ 2 k062 xx6 -> xx12,




-2 kO5 xx1 - 2 k061 xx3 -> xx13,
2 k01 xx1 + 2 k061 xx2 -> xx14}]

devec = Simplify[devec]

devec2 = PowerExpand[devec2]

devec2 = devec2 /. Dispatch[{1/(1+el) ~-> xx9,
1/(1+e1) "3 -> xx10,
1/(1+e2) -> 1/xx7,
1/(1+e2)"3 -> 1/xx7"3,
-2 k04 xx4 - 2 k02 xx6 -> xx8,
2 k062 xx4 + 2 k02 xx5 -> xx11,
2 k04 xx5 - 2 k062 xx6 -> xx12,
-2 k05 xx1 - 2 k061 xx3 -> xx13,
2 k01 xx1 + 2 k061 xx2 -> xx14}]

devec2 = Simplify[devec2]
fort = OpenWrite["devec.f"]

Do[ Dol

If[ ToStringldevec[[i,j]] ] == "0", O,
WriteString[fort,"e(",ToStringlil,",",ToString[jl,") = ",
FortranForm[ devecl[[i,j1]1 1," \n" 11 ,

{j,24} 1, {i,2} ]

Close[fort]

The in-plane rotation angles and their derivatives are found using the following.

sgb = elux[u,ux,v,vx,w,wx]*e2uy[u,uy,v,vy,v,uy]l +
elvx[u,ux,v,vx,w,wx]*e2vy[u,uy,v,vy,w,wy] +
elwx[u,ux,v,vx,w,ux]*e2vy[u,uy,v,vy,w,uvyl;

xx9 = (1 + etfu,ux,v,vx,w,ux])/(1 + e2[u,uy,v,vy,w,wyl);

cg6 = Sqrt[1 - sg6~2];

sgbl = 1/Sqrtl1 + (1/(sg6/((xx9) + cg6)))"2];

sg62 = 1/Sqrt[1 + (1/(sg6/((1/xx9) + cg6)))~2];
cgbl = 1/Sqrt[1 + (sg6/((xx9) + cg6))~2];
cgb2 = 1/Sqrt[1 + (sg6/((1/xx9) + cg6))~2];

gamvec = {sg61,sg62}
uvec = {u,ux,uy,uxx,uxy,uyy,v,vx,vy,vxx,vxy,vyy,¥,wX,Wy,WXx,#xy,wyy,
gam4,gamdx ,gamdy,gam5 ,gambx, gam5y}

dvec = (1/cg61)*0uter[D,gamvec,uvec]

xx9 =.

dvec = dvec /. (1 + e1[u,ux,v,vx,w,wx])/(1 + e2[u,uy,v,vy,w,vy]) -> xx9

dvec = dvec /. (cgb + ((1 + e2[u,uy,v,vy,w,wy])/(1 + ei[u,ux,v,vx,w,wx]))) ->
(cg6 + 1/xx9)

sgb =.

dvec = dvec /. elux[u,ux,v,vx,w,wx]*e2uy[u,uy,v,vy,w,wy] +
elvx[u,ux,v,vx,w,9x]*e2vy[u,uy,v,vy,w,vy] +
elwx[u,ux,v,vx,w,wx]*e2wy[u,uy,v,vy,w,vy] ~> sgb

cgb=.
dvec

dvec //. {Sqrt[1 - sg6°2] -> cg6, 1/Sqrt{1 - sg6~2] -> 1/cg6}

dvec = dvec //. {1 + sg6~2/(cg6 + xx9)~2 -> xx18,
(cg6 + 1/xx9) -> xx19,
1 + xx19°2/sg6~2 -> xx20,




1 + (cgb + xx9)~2/sg62 -> xx21}

dvec = dvec /. Dispatchi{1/(1+e1[u,ux,v,vx,w,%x]) -> xx9,
1/(1+e1[u,ux,v,vx,w,wx]) "2 -> xx15,
1/(1+e2[u,uy,v,vy,w,vy]) -> 1/xx16,
1/(1+e2[u,uy,v,vy,w,wyl) "2 -> 1/xx17}]

Format [eluxf[u,ux,v,vx,%,9x]=elux,FortranForm]
Format[elvx[u,ux,v,vx,w,wx]=elvx,FortranForm]
Format[elwx[u,ux,v,vx,w,wx]=elwx,FortranForm]
Format[e2uy[u,uy,v,vy,w,wyl=e2uy,FortranForm]
Format[e2vy[u,uy,v,vy,w,wyl=e2vy,FortranForm]

Format [e2wy[u,uy,v,vy,w,vyl=e2wy,FortranForm]

Format [Derivative[1,0,0,0,0,0] [elux] [u,ux,v,vx,w,wx]=eluxu,FortranForm]
Format [Derivative[0,1,0,0,0,0] [elux] [u,ux,v,vx,w,vx]=eiuxux,FortranForm]
Format [Derivative[0,0,1,0,0,0] [elux] [u,ux,v,vx,w,vx]=elvux,FortranForm]
Format [Derivative[0,0,0,1,0,0][elux] [u,ux,v,vx,w,wx]=elvxux,FortranForm]
Format [Derivative[0,0,0,0,1,0] [elux] [u,ux,v,vx,w,vx]=eivux,FortranForm]
Format [Derivative[0,0,0,0,0,1] [e1lux] [u,ux,v,vx,w,vx]=elwxux,FortranForm]
Format [Derivative[1,0,0,0,0,0] [elvx] [u,ux,v,vx,%,wx]=elvxu,FortranForm]
Format [Derivative[0,1,0,0,0,0] [elvx] [u,ux,v,vx,%,#x]=elvxux,FortranForm]
Format [Derivative[0,0,1,0,0,0] [elvx] [u,ux,v,vx,%,wx]=elvxv,FortranForm]
Format [Derivative[0,0,0,1,0,0] [elvx] [u,ux,v,vx,¥,9x]=eivxvx,FortranForm]
Format [Derivative[0,0,0,0,1,0][elvx] [u,ux,v,vx,w,vx]=elwvx,FortranForm]
Format [Derivative[0,0,0,0,0,1][el1vx] [u,ux,v,vx,w,wx]=elwxvx ,FortranForm]
Format [Derivative[1,0,0,0,0,0][elwx] [u,ux,v,vx,w,wx]=elsxu,FortranForm]
Format [Derivative[0,1,0,0,0,0][elwx] [u,ux,v,vx,w,wx]=elwxux ,FortranForm]
Format [Derivative[0,0,1,0,0,0] [elwx] [u,ux,v,vx,w,wx]=elwxv,FortranForm]
Format [Derivative[0,0,0,1,0,0][etwx] [u,ux,v,vx,v,vx]=eluxvx,FortranForm]
Format [Derivative[0,0,0,0,1,0][elwx] [u,ux,v,vx,w,wx]=elwxw,FortranForm]
Format[Derivative[0,0,0,0,0,1][elwx] [u,ux,v,vx,w,9x]=elwxwx,FortranForm]
Format [Derivative[1,0,0,0,0,0] [e2uy] [u,uy,v,vy,w,wyl=e2uyu,FortranForm]
Format[Derivative[0,1,0,0,0,0] [e2uy] [u,uy,v,vy,w,wy]l=e2uyuy,FortranForm]
Format[Derivative[0,0,1,0,0,0] [e2uy] [u,uy,v,vy,v,wy]=e2vuy,FortranForm]
Format[Derivative[0,0,0,1,0,0] [e2uy] [u,uy,v,vy,w,vyl=e2vyuy,FortranForm]
Format[Derivative[0,0,0,0,1,0][e2uy] [u,uy,v,vy,v,wyl=e2wuy,FortranForm]
Format[Derivative[0,0,0,0,0,1][e2uy] [u,uy,v,vy,w,vy]l=e2wyuy ,FortranForm]
Format [Derivative[1,0,0,0,0,0][e2vy] [u,uy,v,vy,v,syl=e2vyu,FortranForm]
Format [Derivative[0,1,0,0,0,0][e2vy] [u,uy,v,vy,w,sy]=e2vyuy,FortranForm]
Format[Derivative[0,0,1,0,0,0] [e2vy] [u,uy,v,vy,w,wyl=e2vyv,FortranForm]
Format [Derivative[0,0,0,1,0,0][e2vy] [u,uy,v,vy,w,vy]l=e2vyvy,FortranForm]
Format [Derivative[0,0,0,0,1,0][e2vy] [u,uy,v,vy,v,vyl=e2wvy,FortranForm]
Format [Derivative[0,0,0,0,0,1]1[e2vy] [u,uy,v,vy,w,wyl=e2wyvy,FortranForm]
Format[Derivative[1,0,0,0,0,01[e2vy] [u,uy,v,vy,v,vyl=e2vyu,FortranForm]
Format[Derivative[0,1,0,0,0,0][e2wy] [u,uy,v,vy,w,vy]l=e2ryuy,FortranForm]
Format[Derivative[0,0,1,0,0,0][e2sy] [u,uy,v,vy,%,vyl=e2syv,FortranForm]
Format[Derivative({0,0,0,1,0,0][e2wy] [u,uy,v,vy,%,vy]l=e2vyuy,FortranForm]
Format [Derivative[0,0,0,0,1,0] [e2wy] [u,uy,v,vy,w,9y]l=e2vyw,FortranForm]
Format[Derivative[0,0,0,0,0,1][e2vy] [u,uy,v,vy,%,sy]l=e2wywy,FortranForm]
Format [el[u,ux,v,vx,w,wx]=el,FortranForm]
Format[e2[u,uy,v,vy,w,wyl=e2,FortranForm]

Format [Derivative[1,0,0,0,0,0] [e1] [u,ux,v,vx,%,wx]=elu,FortranForm] ;
Format [Derivative[0,1,0,0,0,0][e1] [u,ux,v,vx,%,wx]=elux,FortranForm] ;
Format [Derivative[0,0,1,0,0,0]1[e1] [u,ux,v,vx,w,wx]=elv,FortranForm] ;
Format [Derivative[0,0,0,1,0,0] [e1] [u,ux,v,vx,%,wx]=elvx,FortranForm] ;
Format [Derivative[0,0,0,0,1,0][e1] [u,ux,v,vx,w,wx]=elw,FortranForm] ;
Format [Derivative[0,0,0,0,0,1] [e1] [u,ux,v,vx,w,wx]=eiwx,FortranForm] ;
Format[Derivative[1,0,0,0,0,0][e2] [u,uy,v,vy,%,wyl=e2u,FortranForm] ;
Format[Derivative[0,1,0,0,0,0][e2] [u,uy,v,vy,w,wyl=e2uy,FortranForm] ;
Format [Derivative[0,0,1,0,0,0][e2] [u,uy,v,vy,w,wyl=e2v,FortranForm] ;
Format [Derivative[0,0,0,1,0,0][e2] [u,uy,v,vy,%,9y]l=e2y,FortranForm] ;
Format[Derivative[0,0,0,0,1,0][e2][u,uy,v,vy,w,wy]l=e2w,FortranForm] ;
Format[Derivative[0,0,0,0,0,1][e2] [u,uy,v,vy,w,wyl=e2wy,FortranForm] ;

dvec = dvec /. (1 + el1)/xx17 -> xx22
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dvec = Simplify[dvec]

fort = OpenWrite["dvec.f"]

Dol Dol

If[ ToStringldvec[[i,jl1] ] == “0o", O,
WriteString[fort,"e(",ToString[il,",",ToString[j],") = ",
FortranForm[ dvec[[i,j]] 1," \n" 11 ,

{j,24} 1, {i,2} ]

Close[fort]

B.8 Development of Shear Wapring Functions

The following code was used to develop the coefficient matrix and right-hand-side of the
system of equations used to determine the layer-wise cubic shear warping functions.

Clear["@"]
SetOptions[$Dutput, FormatType -> FortranForm, PageWidth -> Infinityl

(* for layers NOT containing reference surface *)

glali_,z ] := c14[i] + b14[i] z°3
g150i_,z_] := c15[i]l + z + b15[i] z"3
g24[i_,z_] := c24[i] + z + b24[i] z~3
g25[i_,z_] := c25[il + b25[i] z"3
glazli_,z_] := 3 b14[i] z"2
g15z[i.,z.] := 1 + 3 b15[i] z~2
g24z[i_,z_] := 1 + 3 b24[i] z~2
g25z[i_,z_] := 3 b25[i] z~2

(* for layers containing reference surface *)

glali_,z_] := a14[i] z~2 + b14[i] z°3
g15[0i_,z ] := z + a15[i] z°2 + b15[i] z°3
g24li_,z.] := z + a24[i] z~2 + b24[i] z°3
g25[i.,z_] := a25[i] z~2 + b25[i] z°3
gl4zli_,z_] := 2 a14[i] z + 3 b14[i] z~2
g15z[i_,z_] := 1 + 2 a15[i]l z + 3 b15[i] z"2
g24z[i_,z_] := 1 + 2 a24[i] z + 3 b24[i] z~2
g25z[i_,z_] := 2 a25[i] z + 3 b25[i] z~2

(* In-plane displacements *)

uili_,z.J := g15[i,z] g6 + g14[i,z] g4
w2li_,z.] := g25[i,z] g5 + g24[i,z] g4

(* Transverse shear strains *)

b13[i_,z_] := (g15z[i,z] - rkid gi5[i,z] - rk7d g25[i,z]) g5 +
(g14z[i,z] - rkid gi4[i,z] - rk7d g24[i,z]) g4
b23[i.,z.] := (g25z[i,z] - rkx8d gi5[i,z] - rk2d g25[i,z]) g5 +

(g24z[i,z] - rk8d g14[i,z] - rk2d g24[i,z]) g4
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(* Transverse shear stresses *)

j23[i_,z.] :

2 qbl4,41[i] b23[i,z] + 2 gb[4,51[i] b13[i,z]

j13[i.,z.] := 2 qb[4,5]1[i] b23[i,z] + 2 gb[5,5][i] b13[i,z]

(* miscellanea *)

clist[i_.] := {a14[i], ai15[i], a24[i], a25[il,
b14[il, b15[il, b24[i]l, b25[i],
c14[i], c15[il, c24[i], c25[il}
clist2[i_] := {a14[i], ai15[i], a24[i], a25[i],
b14[il, b15[il, b24[i], b25[i],
c14[il, c15[il, c24[il, c25[il,
a14[i+1] ,a15[i+1],a24[i+1],a25[i+1],
b14[i+1],b15[i+1],b24[i+1],b25[i+1],
c14[i+1],c15[i+1],c24[i+1],c25[i+1]}
dum4[expr_,i_] := (dum = Collect[expr,{g4,g5}]1;
coefgd = Coefficient [dum,g4];
dum = Collect[coefg4,clist[i]])
dumb [expr_,i_] := (dum = Collect[expr,{g4,g5}];
coefghs = Coefficient[dum,g5];
dum = Collect[coefg5,clist[i]])
dum42[expr._,i.] := (dum = Collect[expr,{g4,g5}];
coefgd = Coefficient[dum,g4];
dum = Collect[coefg4,clist2[i}])
(dum = Collect[expr,{g4,g5}];
coefgh = Coefficient [dum,g5];
dum = Collect[coefg5,clist2[il])

dum52[expr_,i_] :

(* Pagano’s flat plate *)

(*

np = 3

Dol Dol ali,jl=0, {j,10%np}], {i,10%np}]
Do[ rhs[il=0, {i,10*np}]
rki1d=rk2d=rk7d=rk8d=0

z[1] = -1
z[2] = -1/3
z[3] = 1/3
z[4] = 1

g13 = 3000000000
g23 = (2/5) g13

j13l1,z_] := 2 gi13 b13[1,z]

j13[2,z_]1 := 2 g23 b13[2,z]

j13[3,z_]1 := 2 g13 b13[3,z]

j23[1,z_] := 2 g23 b23[1,z]

j23[2,z_] := 2 g13 b23[2,z]

j23[3,z_] := 2 g23 b23[3,z]

*)

(*--- Case I: Bottom layer is NOT reference surface

(* Find coefficients for b23=0 at bottom surface *)

Clear[“g*"]
Clear["a"]
Clear{"rhs"]

g1ali_,z.] := c14[i] + b14[i] z~3
gis[i_,z_] := c15[i] + z + b15[i] z~3

g24li_,z_1 := c24[i] + z + b24[i] z"3
g25[i_,z_1 := c25[i] + b25[i] z"3
glaz[i_,z_] := 3 b14[i] z~2
gibzfi_,z_] := 1 + 3 b15[i] z"2
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1 + 3 b24[i] z"2
3 b25[i] z~2

g24z[i_,z] :
g25z[i_,z_] :

expr = b23[1,z{1]]

Do[ a[1,i] = Coefficient[dum4[expr,1],clist[1]1[[i1]], {i,12} ]
rhs[1] = (dum = dum4[expr,1];
Do[ dum = dum - al1,j] clist[11[[§1], {j,1,12} 1;
dum = -dum)

Do[ a[2,i] = Coefficient[dum5{expr,1],clist[1]1[[i1]]1, {i,12} ]
rhs[2] = (dum = dumb[expr,1];
Dol dum = dum - a[2,j] clist[1][[j]], {j,1,12} 1;
dum = -dum)

(* Find coefficients for b13=0 at bottom surface *)
expr = b13[1,z[1]1]

Dol a[3,i] = Coefficient[dum4[expr,1],clist[1]1[[i1]1], {i,12} ]
rhs[3] = (dum = dum4[expr,i];
Do[ dum = dum - a[3,j] clist[1J[[j11, {j,1,12} ]1;
dum = ~-dum)

Do[ a[4,i] = Coefficient[dumS[expr,1]),clist[11[[i1]1], {i,12} ]
rhs[4] = (dum = dumb[expr,1];
Do[ dum = dum - a[4,j] clist[1]1[[j1], {j,1,12} 1;
dum = -dum)

$0utput = OpenWrite["amat_greer.f"]
Print["Case I"]

Information[a]

Information[rhs]
Close["amat_greer.f"]

$0utput = {OutputStream["stdout",1]}
SetOptions[$0utput, FormatType -> OutputForm]

(k-momomem Case I1I: Bottom layer IS reference surface —-------- *)
(* Find coefficients for b23=0 at bottom surface *)
Clear["g*"]

Clear["a"]
Clear["rhs"]

glali_,z_] := a14[i] z~2 + b14[i] z"3
gisli_,z_] := z + ai15[i] z~2 + bi5[i] z"3
g24[i_,z.] := z + a24[i] z~2 + b24[i] z~3
g25[i_,z_] := a25[i] z~2 + b25[i] z"3
glazli.,z.] := 2 a14fi] z + 3 b14[i] z"2
g16z[i_,z_] := 1 + 2 a15[i] z + 3 b15[i] z~2
g24z[i_,z_] := 1 + 2 a24[i] z + 3 b24[i] z"2
g25z[i.,z.] := 2 a25[i] z + 3 b25[i] z~2

expr = b23[1,z[1]]
Dol af1,i] = Coefficient[dum4[expr,1],clist[1I[[il11], {i,12} ]
rhs[1] = (dum = dum4[expr,1];
Do[ dum = dum - a[1,j] clist[11L[311, {j.1,12} 1;
dum = -dum)

Dol al2,i] = Coefficient[dum5[expr,1],clist[11[[i11], {i,12} ]
rhs[2] = (dum = dum5fexpr,1];
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Dol dum = dum - a[2,j] clist[11[[j1], {j,1,12} I;
dum = -dum)

(* Find coefficients for b13=0 at bottom surface *)
expr = b13[1,z[1]]

Do[ a[3,i] = Coefficient[dum4[expr,1],clist[1][[il1], {i,12} ]
rhs[3] = (dum = dum4[expr,i];
Do[ dum = dum - a[3,j] clist[1][[j]1], {j,1,12} 1;
dum = -dum)

Do[ al[4,i] = Coefficient[dumS[expr,1]1,clist[1]1[[i11], {i,12} ]
rhs[4] = (dum = dumb[expr,1];
Do[ dum = dum - a[4,j] clist[1][[j1], {j,1,12} ]1;
dum = -dum)

$0utput = OpenAppend["amat_greer.f"]
Print["Case II"]

Information[a]

Information[rhs]
Close["amat_greer.f"]

$0utput = {OutputStream['stdout",1]}
SetOptions[$0utput, FormatType -> OutputForm]

(* Find coefficients for b23=0 at top surface, z = z[np + 1] *)
Clear["g*"]

Clear["a"]

Clear[“rhs"]

(* for plys NOT containing reference surface, al4 = al5 = a24 = a25 = 0 %)

a[5+12%(np-1) ,1+12%(np-1)] = 1;
rhs[5+12%(np-1)] = 0;

a[6+12#(np-1),2+12%(np-1)] = 1;
rhs[6+12%(np-1)] = 0O;

a[7+12%(np-1) ,3+12%(np-1)] = 1;
rhs[7+12%(np-1)] = O;

a[8+12%(np-1) ,4+12%(np-1)] = 1;
rhs[8+12%(np-1)] = O;

glali_,z_] := c14[i] + b14[i] z~3
g15[i_,z_] := c15[i] + z + b15[i] z"3
g24[i_,z_] := c24[i] + z + b24[i] 2~3
g25[i.,z.] := c25[i] + b25[i] z°3
glazl[i_,z_] := 3 b14[i] z~2
g15z[i_,z_] := 1 + 3 b15[i] z~2
g24z[i_,z.] := 1 + 3 b24[i] z~2
g25z[i.,z.] := 3 b25[i] z"2

expr = b23[np,z[np + 1]1]

Do[ a[9+12%(np-1),i+12#(np-1)] = Coefficient[dumd4[expr,np],clist[np] [[i1]], {i,12} ]
rhs[9+12#(np-1)] = (dum = dumd[expr,np];
Do[ dum = dum - a[9+12%(np-1),j+12*%(np-1)] clist[npl[[j11, {j,1,12} 1;
dum = -dum)




Dol al[10+12*(np-1),i+12%(np-1)] = Coefficient[dum5 [expr,np],clistnpl[[i111, {i,12} ]
rhs[10+12*(np-1)] = (dum = dumS[expr,np]l;
Dol dum = dum - al10+12*(np-1),j+12#(np~1)] clist[np]l[[31], {j,1,12} 1;
dum = -dum)

(* Find coefficients for b13=0 at top surface *)
expr = b13[np,z[np + 1]]

Do[ al11+12%(np-1),i+12*(np-1)] = Coefficient[dum4[expr,np],clist[np]l[[il]1], {i,12} ]
rhs[11+12%(np-1)] = (dum = dum4[expr,np];
Do[ dum = dum - a[11+12%(np~1),j+12%(np-1)] clist[npl[[jI1]1, {j,1,12} 1;
dum = -dum)

Do[ a[12+12#(np-1),i+12%(np-1)] = Coefficient [dums5[expr,np],clist[npl[[i]]], {i,12} ]
rhs[12+12%(np-1)] = (dum = dum5[expr,np];
Do[ dum = dum - a[12+12#(np-1),j+12*(np-1)] clist[npl[[j]1], {j,1,12} 1;
dum = -dum)

$0utput = OpenAppend["amat_greer.f"]
Print["Case VI"]

Information[a]

Information[rhs]
Close["amat_greer.f"]

$0utput = {OutputStream["'stdout",1]}
SetOptions[$0utput, FormatType -> OutputForm]

[ Case VII: top layer IS reference surface *)
(* Find coefficients for b23=0 at top surface, z = z[np + 1] #*)
Clear["g*"]

Clear["a"]

Clear["rhs"]

(* for plys containing reference surface, c14 = c15 = ¢24 = ¢c25'= 0 *)

a[5+12%(np-1) ,9+12*(np-1)] = 1;
rhs[5+12%(np-1)] = 0;

a[6+12*(np-1),10+12% (np-1)] = 1;
rhs[6+12*(np-1)] = 0;

al[7+12*(np-1) ,11+12%(np-1)] = 1;
rhs[7+12%(np-1)] = 0;

a[8+12%(np-1),12+12%(np-1)] = 1;

rhs[8+12*(np-1)] = 0;

glali_,z_] := a14[i] z~2 + b14[i] z~3
gi5li_,z_] := z + a15[i] z*2 + b15[i] z"3
g24[i_,z_] := z + a24[i] z~2 + b24[i] z°3
g25[i_,z_] := a26[i] z~2 + b25[i] z"3
glazli_,z_] := 2 a14[i] z + 3 b14[i] z"2

g15z[i_,z_] := 1 + 2 ai15[i] z + 3 b15[i] z"2

g24z[i_,z_] := 1 + 2 a24[i] z + 3 b24[i] z"2

g25z[i_,z_] := 2 a25[i] z + 3 b25[i] z"2

expr = b23[np,z[np + 1]1]
Do[ al9+12%(np-1),i+12%(np-1)] = Coefficient[dum4[expr,npl,clist[npl[[i11], {i,12} ]

rhs[9+12#(np-1)] = (dum = dum4[expr,np];
Do[ dum = dum - a[9+12%(np-1),j+12*(np-1)] clist[npl[[j1], {j,1,12} J;
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dum = -dum)

Dol a[10+12%(np-1),i+12*%(np-1)] = Coefficient[dum5[expr,np],clist[npl[[il1], {i,12} ]
rths[10+12*(np-1)] = (dum = dum5[expr,np];
Do[ dum = dum - a[10+12%(np-1),j+12%(np-1)] clist[npl[[j1], {j,1,12} 1;
dum = -dum)

(* Find coefficients for b13=0 at top surface *)
expr = b13[np,z[np + 111

Do[ al11+12*(np-1),i+12#(np-1)] = Coefficient [dumé4[expr,np],clist[np] [[i]1]1], {i,12} ]
rhs[11+12%(np~1)] = (dum = dum4[expr,np];
Do[ dum = dum - a[11+12%(np~1),j+12%(np-1)] clist[npl[[j11, {j,1,12} 1;
dum = -dum)

Do[ a[12+12*(np-1),i+12*(np-1)] = Coefficient [dum5[expr,np],clist[npl[[111], {i,12} ]
rhs[12+12%(np-1)] = (dum = qumS5[expr,np];
Do[ dum = dum - a[12+12%(np-1),j+12#(np-1)] clist[npl[[j1], {j,1,12} ];
dum = ~dum)

$0utput = OpenAppend["amat_greer.f"]
Print["Case VII"]

Informationfa]

Informationfrhs]
Close["amat_greer.f"]

$0utput = {OutputStream["stdout",1]}
SetOptions[{$0utput, FormatType -> OutputForm]

(* FOR EACH PLY *k k)

(* Case III: 1layer (iply+1) IS reference surface, layer (iply) is NOT *)
Clear["g*"]

Clear["a"]

Clear["rhs"]

(* these apply to layer (iply) #*)

a[5+12*(iply-1),1+12%(iply-1)] = 1;
rhs[5+12%(iply-1)] = 0;
a[6+12%(iply-1),2+12%(iply-1)] = 1;
rhs[6+12%(iply-1)] = 0;

a[7+12%(iply-1) ,3+12x(iply-1)] = 1;
ths[7+12#(iply~-1)] = 0;

a[8+12%(iply-1) ,4+12*(iply-1)] = 1;
rhs[8+12x(iply-1)] = 0;

(* for layer (iply) *)

g14liply,z_] := c14liply] + b14[iply] z"3

c15[iply] + z + b15[iply] z~3
c24[iply] + z + b24[iply] z"3
c25[iply] + b25[iply] z"3

g15[iply,z_]
g24[iply,z_]
g25[iply,z_]

3 b14[iply] z~2
1 + 3 b15[iply] z~2
1 + 3 b24[iply] z~2
3 b25[iply] z"2

gl4zliply,z_] :
g15z[iply,z_]
g24z[iply,z_] :
g25z[iply,z_] :

]

(% for layers (iply + 1) *)
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gl4[iply+1,z_] := a14[iply+1] z~2 + b14[iply+1] z~3

g15[iply+1,z.] := z + a15[iply+1] z~2 + b15[iply+1] z~3
g24[iply+1,z_] := z + a24[iply+1] z~2 + b24[iply+1] z~3
g25[iply+1,z_] := a25[iply+1] z"2 + b25[iply+1] z"3

gl4zliply+1,z_]
g15z[iply+1,z. ]
g24z[iply+l,z.]
g25z[iply+1,z_]

2 a14[iply+1] z + 3 b14[iply+1] z~2
1 + 2 a15[iply+1] z + 3 bi5[iply+1] z~2
1 + 2 a24[iply+1] z + 3 b24[iply+1] z"~2
2 a25[iply+1] z + 3 b25[iply+1] z~2

(* Find coefficients for ul continuity *)
expr = uiliply+1,z[iply+1]1] - uiliply,z[iply+11];

Do[ a[9+12%(iply-1),i+12*(iply-1)] =
Coefficient [dum42[expr,iply],clist2[iply]l [[i11], {i,24} 1;
rhs[9+12%(iply-1)] = (dum = dum42[expr,iplyl;
Dol dum = dum - a[9+12%(iply-1),j+12*(iply-1)]*
clist2[iplyl[[j1], {j,1,24} 1;
dum = -dum);

Do[ a[10+12#(iply-1),i+12*(iply-1)] =
Coefficient [dum52[expr,iplyl,clist2[iply]l [[i11], {i,24} 1;
rhs[10+12+(iply-1)] = (dum = dum52[expr,iply];
Do[ dum = dum - a[10+12*(iply-1),j+12*(iply-1)]*
clist2[iplyl[[j1], {j.,1,24} 1;
dum = -dum);

(* Find coefficients for u2 continuity *)
expr = u2[iply+1,z[iply+1]] - u2[iply,z[iply+11];

Do[ a[11+12*(iply-1),i+12%(iply~1)] =
Coefficient [dum42[expr,iplyl,clist2[iply] [[i11], {i,24} 1;
rhs[11+12*(iply-1)] = (dum = dum42[expr,iply];
Dol dum = dum - a[11+12*(iply-1),j+12*(iply-1)]+*
clist2[iplyl [[j11, {j,1,24} 1;
dum = ~dum);

Do[ a[12+12#(iply-1),i+12*(iply-1)] =
Coefficient [dumS2[expr,iplyl,clist2[iply]l [[i11]1, {i,24} 1;
rhs[12+12%(iply-1)] = (dum = dum52[expr,iply];
Dol dum = dum - a[12+12#(iply-1),j+12*(iply-1)]=*
clist2[iplyl[[j1], {j.1,24} 1;
dum = -dum);

(* Find coefficients for J13 stress continuity *)
expr = j13[iply+1,z[iply+1]] - j13[iply,z[iply+1]];

Dol al[13+12#(iply-1),i+12%(iply-1)] =
Coefficient[dum42[expr,iplyl,clist2[iply] [[i11], {i,24} 1;
rhs[13+12%(iply-1)] = (dum = dum42[expr,iply];
Do[ dum = dum - a[13+12%(iply-1),j+12*(iply~1)]=*
clist2[iplyl[[31], {j,1,24} 1;
dum = -dum); .

Do[ a[14+12*(iply-1),i+12*(iply-1)] =
Coefficient [dum52[expr,iply],clist2[iply] [[i11]1, {i,24} 1;
rhs[14+12%(iply-1)] = (dum = dum52[expr,iply];
Do[ dum = dum - a[14+12#(iply-1),j+12*%(iply-1)]*
clist2[iplyl[[51], {j.,1,24} 1;
dum = -dum);
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(* Find coefficients for J23 stress continuity *)
expr = j23[iply+1,z[iply+1]] - j23[iply,z[iply+11];

Dol af15+12*(iply-1),i+12+(iply-1)] =
Coefficient [dum42[expr,iply]l,clist2{iplyl [[11]1], {i,24} 1;
rhs[15+12*%(iply-1)] = (dum = dum42[expr,iply];
Do[ dum = dum - a[15+12*(iply-1),j+12*(iply-1)]+*
clist2[iplyl[[31], {j,1,24} 1;
dum = -dum);

Do[ a[16+12%(iply-1),i+12*(iply-1)] =
Coefficient [dum52[expr,iply]l,clist2[iply] [[i}]1], {i,24} 1;
rhs[16+12%(iply-1)] = (dum = dum52[expr,iply];
Do[ dum = dum - al16+12%(iply-1),j+12*(iply-1)]*
clist2[ip1yl[[j1], {j,1,24} 1;
dum = -dum)

$0utput = OpenAppend["amat_greer.f"]
Print["Case III"]

Information[a]

Information[rhs]
Close["amat_greer.f"]

$0utput = {OutputStream["stdout”,1]}
SetOptions[$0utput, FormatType -> DutputForm]

(% ——————- Case IV: neither layer (iply+1) nor layer (iply) is ref sfc
Clear["g*"]

Clear["a"]
Clear["rhs"]

glali_,z.] := c14[i] + b14[i] z-3
g15[i_,z_] := c15[i] + z + b15[i] z"3
g24[i_,z_] := c24[i] + z + b24[i] z"3
g25[i_,z_] := c25[i] + b25[i] z°3
gl4zli_,z_] := 3 b14[i] z~2
g15z[i.,z.] := 1 + 3 b15[i] z~2
g24zli.,z.] := 1 + 3 b24[i] z"2
g25z[i_,z_] := 3 b25[i] z~2

(* these apply to layer (iply) *)

a[5+12%(iply-1),1+12%(iply-1)] = 1;
rhs[5+12#(iply-1)] = 0;
a[6+12#(iply~1) ,2+12*(iply-1)] = 1;
rhs[6+12*(iply-1)] = 0;
a[7+12%(iply-1),3+12%(iply-1)] = 1;
rhs[7+12%(iply-1)] = 0;
a[8+12+(iply-1) ,4+12*(iply-1)] = 1;

rhs[8+12#(iply-1)] = O;

(* Find coefficients for ul continuity *)

expr = ulliply+1,z[iply+1]] - wiliply,z[iply+1]1];
Dol a[9+12#(iply-1),i+12*(iply-1)] =

Coefficient [dum42[expr,iply],clist2[iply] [[i11]1, {i,24} 1;
rhs[9+12%(iply-1)] = (dum = dum42[expr,iplyl;




Dol dum = dum - a[9+12+(iply-1),j+12%(iply-1)]*
clist2[iplyl [[j11, {j,1,24} 1;
dum = -dum);

Do[ a[10+12%(iply-1),i+12*(iply-1)] =
Coefficient [dum52[expr,iplyl,clist2[iply] [[i1]1]1, {i,24} 1;
rhs[10+12*%(iply-1)] = (dum = dumb2[expr,iplyl;
Do[ dum = dum - a[10+12%(iply-1),j+12*(iply-1)]*
clist2[iplyl [[11, {j,1,24} 1;
dum = -dum);

(* Find coefficients for u2 continuity *)
expr = u2[iply+1,z[iply+1]] - u2[iply,z[iply+11];

Do[ a[11+12%(iply-1),i+12*(iply-1)] =
Coefficient [dum42[expr,iply],clist2[iply] [[i]1], {i,24} 1;
rhs[11+12#(iply-1)] = (dum = dum42[expr,iply];
Do[ dum = dum - a[11+12#(iply~1),j+12+(iply-1)]*
clist2(iplyl[[j1], {j,1,24} 1;
dum = -dum);

Do[ a[12+12#(iply-1),i+12%(iply-1)] =
Coefficient [dum52[expr,iply],clist2[iply]l [[i]1]1], {i,24} 1;
rhs[12+12%(iply-1)] = (dum = dum52[expr,iply]l;
Do[ dum = dum - a[12+412#(iply-1),j+12*(iply-1)]*
clist2[iplyl [[j11, {j,1,24} 1;
dum = ~-dum);

(* Find coefficients for J13 stress continuity *)
expr = j13[iply+1,z[iply+11] - j13[iply,z[iply+11];

Do[ a[13+12#(iply-1),i+12#(iply-1)] =
Coefficient [dum42[expr,iplyl,clist2[iply] [[i1]1], {i,24} ]1;
rhs[13+12%(iply-1)] = (dum = dum42[expr,iply];
Do[ dum = dum - a[13+12%(iply-1),j+12*(iply-1)]1*
clist2[iplyl [1j11, {j,1,24} 1;
dum = -dum);

Dol a[14+12#%(iply-1),i+12+(iply-1)] =
Coefficient [dum52[expr,iply]l,clist2[iply]l [[i11], {i,24} I;
rhs[14+12#(iply-1)] = (dum = dum52{expr,iply};
Do[ dum = dum - a[14+12*(iply-1),j+12*(iply~-1)]+*
clist2[iplyl[[j1], {j,1,24} 1;
dum = -dum);

(* Find coefficients for J23 stress continuity *)
expr = j23[iply+1,z[iply+1]] - j23[iply,zliply+11]l;

Do[ al[15+12#(iply-1),i+12*(iply-1)] =
Coefficient [dum42[expr,iply],clist2[iply] [[i]]1], {i,24} 1;
rhs[15+12%(iply-1)] = (dum = dum42[expr,iply];
Do[ dum = dum - a[15+12%(iply-1),j+12*(iply-1)]*
clist2[iply]l [[311, {j,1,24} 1;
dum = -dum);

Do[ a[16+12#(iply-1),i+12%(iply-1)] =
Coefficient [dum52[expr,iply],clist2[iplyl [[i11], {i,24} ]1;
rhs[16+12%(iply-1)] = (dum = dum52[expr,iply]l;
Do[ dum = dum - a[16+12%(iply-1),j+12*(iply-1)]#*
clist2[iplyl [[j1], {j,1,24} 1;
dum = -dum)
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$0utput = OpenAppend["amat_greer.f"]
Print["Case IV"]

Information[a]

Information[rhs]
Close["amat_greer.f"]

$0utput = {OutputStream["stdout",1]1}
SetOptions[$0utput, FormatType -> OutputForm]

(* ——————- Case V: layer (iply+1) is NOT reference surface, layer (iply) IS --——----------- *)
Clear["g*"]

Clear["a"]

Clear["rhs"]

(* these apply to layer (iply) *)

a[5+12%(iply~1),9+12#(iply-1)] = 1;
rhs[5+12*(iply-1)] = 0;

a[6+12#%(iply-1),10+12*(iply-1)] = 1;
rhs[6+12%(iply-1)] = 0;

a[7+12%(iply-1) ,11+12*(iply-1)] = 1;
rhs[7+12%(iply-1)] = 0;

al[8+12*(iply-1),12+12%(iply-1)] = 1;
rhs[8+12*(iply-1)] = 0;

(% for layer (iply+1) *)
gl4a[iply+1,z._]

g15[iply+1,z_]
g24[iply+1,z_]

c14[iply+1] + b14[iply+1] z"3
c15[iply+1] + z + b15[iply+1] z"3
c24[iply+1l + z + b24[iply+1] 23

g25[iply+1,z_] c25[iply+1] + b25[iply+1] z°3
gl4z[iply+1,z_] := 3 b14[iply+1] z"2
g15z[iply+1,z_] := 1 + 3 b15[iply+1] z~2
g24z[iply+1,z_] := 1 + 3 b24[iply+1] z~2

g25z[iply+l,z_] := 3 b25[iply+1] z~2
(* for layer (iply) *)

glaliply,z_ ] : al4[iply] z~2 + b14[iply] z~

nwon
N
+

z"3
g15{iply,z_] : a15[iply] z"2 + bi5[iply] z"3
g24[iply,z_] := z + a24[iply] z~2 + b24[iply] z~3
g25[iply,z_]1 := a26[iply] z~2 + b25[iply] z~3
gldz[iply,z_] := 2 a14[iply] z + 3 b14[iply] z"2
g15z[iply,z_] := 1 + 2 ai15[iply] z + 3 b15[iply] z~2
g24z[iply,z.] := 1 + 2 a24[iply] z + 3 b24[iply] z"2
g25z[iply,z_] := 2 a25[iply] z + 3 b25[iply] z~2

(% Find coefficients for ul continuity *)
expr = ull[iply+1,z[iply+1]] ~ uwi[iply,z[iply+1]];

Dol a[9+12*(iply-1),i+12*(iply-1)] =
Coefficient [dum42[expr,iply],clist2[iply] [[i11], {i,24} 1;
rhs[9+12*(iply-1)] = (dum = dum42[expr,iplyl;
Do[ dum = dum - a[9+12*(iply-1),j+12*(iply-1)]*
clist2liply] [[311, {j,1,24} 1;
dum = -dum);
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Do[ a[10+12%(iply~-1),i+12*(iply-1)] =
Coefficient [dum52[expr,iplyl,clist2[iplyl[[111], {i,24} 1;
rhs[10+12%(iply-1)] = (dum = dum52[expr,iply];
Do[ dum = dum - a[10+12%(iply-1),j+12#(iply~1)]+*
clist2[iplyl [[§11, {j,1,24} 1;
dum = -dum);

(* Find coefficients for u2 continuity *)
expr = u2[iply+1,z[iply+1]] - uw2[iply,z[iply+1]];

Do[ al11+12%(iply-1),i+12#(iply-1)] =
Coefficient {dum42[expr,iplyl,clist2[iplyl[[1]11], {i,24} 1;
rhs[11+12%(iply-1)] = (dum = dum42[expr,iplyl;
Dol dum = dum - a[11+12*(iply-1),j+12+(iply-1)]*
clist2[iply]l [[j1], {j,1,24} 1;
dum = -dum) ;

Do[ al[12+12%(iply-1),i+12%(iply-1)] =
Coefficient [dum52[expr,iply]l,clist2[iply] [[i11]1, {i,24} 1;
rhs[12+12#(iply-1)] = (dum = dum52[expr,iply];
Do[ dum = dum - a[12+12#(iply-1),j+12*(iply-1)]*
clist2[iplyl [[§1], {j,1,24} 1;
dum = =dum) ;

(* Find coefficients for J13 stress continuity *)
expr = j13[iply+1,z[iply+1]] - j13[iply,z[iply+1]];

Dol a[13+12*(iply-1),i+12*(iply-1)] =
Coefficient [dum42[expr,iply]l,clist2[iply] [[i1]1], {i,24} 1;
rhs[13+412%(iply-1)] = (dum = dum42[expr,iply];
Do[ dum = dum - a[13+12*(iply-1),j+12*(iply-1)]*
clist2[iplyl[[j13, {j,1,24} 1;
dum = -dum);

Dol a[14+12#(iply-1),i+12%(iply-1)] =
Coefficient [dum52[expr,iply]l,clist2[iply] [[i11], {i,24} 1;
rhs[14+12*%(iply-1)] = (dum = dum52[expr,iply];
Do[ dum = dum - a[14+12%(iply-1),j+12*(iply-1)]*
clist2[iplyl [[313, {j,1,24} 1;
dum = -dum) ;

(* Find coefficients for J23 stress continuity *)
expr = j23[iply+1,z[iply+1]1] - j23[iply,z[iply+1]1];

Dol al[15+12#(iply-1),i+12#(iply-1)] =
Coefficient [dum42{expr,iply],clist2[iply]l [[i]1]1], {i,24} 1;
rhs[15+12%(iply-1)] = (dum = dum42[expr,iply]l;
Do[ dum = dum - a[15+12#(iply-1),j+12*(iply-1)]*
clist2[iplyl [[j11, {j,1,24} 1;
dum = -dum) ;

Do[ al[16+12*(iply-1),i+12#(iply~1)] =
Coefficient [dumb2[expr,iplyl,clist2[iply]l [[i]111, {i,24} 1;
rhs[16+12%(iply-1)] = (dum = dum52[expr,iply];
Do[ dum = dum - a[16+12*(iply-1),j+12*(iply-1)]=*
clist2[iplyl [[311, {j,1,24} 1;
dum = -dum)

$0utput = OpenAppend["amat_greer.f"]
Print["Case V"]




Information[a]
Information[rhs]
Close["amat_greer.f"]

$0utput = {OutputStream["'stdout",1]}
SetOptions[$0utput, FormatType -> OutputForm]

B.4 Thickness Stretch Function Development

The following Mathematca code was used to develop the thickness stretch functions.

Clear["@"]

wola_] := WriteString[$Output,a]

wo["preliminaries..."]

g30[i_] := a30[i] + 2+b30[il*z
g31[i_] := a31[i] + 2%b31[i]*z
g32[i_] := a32[i] + 2%b32[i]*z
g33[i_] := a33[i] + 2#b33[i]*z
g34[i ] := a34[i] + 2+*b34[il+z
g35fi_] := a35[i] + 2#b35[il#*z
g36[i_] := a36[i] + 2*b36[i]*z
g37[i.] := a37[i] + 2%b37[i]*z
g38[i_] := a38[i] + 2*b38[il*z
g39[i_] := a39[i] + 2%b39[i]*z
g41[i ] := aq1[i] + 2*b41[i]+*z
g42[i ] := a42[i] + 2¥b42[i]*z
g43[i_] := a43[i] + 2+b43[il+z
g44[i_] := a44[i] + 2¥b44[il*=z

g51 [i_] := rkd4d*g41l [i] + rk5d*g42[i]
g52[i_] := rk5d*g14[i] - rk4d+g24[il
g61[i_] := rk4d*g43[i] + rk5d*g44[i]
g62[i_] := rk5d*g15[i] ~ rk4d#g25[i]

alpha3[i_] := a30[il#psi[1] + a31[il*psil[2] + a32[i]l*psil3] +
a33[i]*psi[4] + a34[il*psi[5] + a35[il*psil6] + a36[il*psi[7] +
a37[i]*psil8] + a38[il*psi[9] + a39[i]#psi[10] + (rk4d*adi[i] +
rk5d*a42[i])*psi[11] + (rk4d+*a43[i] + rk5d*ad4[i])*psil[12]

beta3[i_] := b30[il*psil[1] + b31[il*psi[2] + b32[il*psi[3] +
b33[il*psi[4] + b34[i]*psi[5] + b35[i]*psil6] + b36[il*psil7] +
b37[i]l*psi[8] + b38[i]#psi[9] + b39[il*psi[10] + (rk4dxb41[i] +

rk5d¥b4a2[i])#psi[11] + (rk4d+ba3[i] + rk5d+ba4[il)*psil12]
u3[i.] := alpha3[il*z + beta3[i]*z"2

bs11[i_]

i

psil1] + zxpsil[4] + g14[il*psi[7] + g15[il*psi[9] -
rk5d+g24[il#psi[11] ~ rk5d*g25[il*psi[12]

bs22[i_] := psi[2] + z#psi[5] + g24[il*psi[8] + g25[il#psil[10] +
rk4d+g1a[il#psil11] + rkad+gi5[il*psi[12]

g30[il*psi[1] + g31[il*psil2] + g32[il*psil3] +
g33[il*psil[4] +
g34[i]*psil5] + g35[il*psil6] + g36[il*psil7] +
g37[il*psil8] + g38[i)*psi[9] + g39[il*psil10] +
g51[i1+psi[11] + g61[il*psil12]

(psil3] + z*psi[6] + g24[il+*psi[7] + gl4[i]*psil8] +
g25[il*psi[9] + g15[il*psi[10] + g52[il*psi[11] *

bs33[i_]

bs12[i_]
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g62[il*psil12])/2

§33[i_] := qb13[il¥bsi1[i] + qb23[il*bs22[i] + gb33[il*bs33[i] +
2*qb36 [i]*bs12[i]

bigmat = Table [0,{48},{48}]
rvec = Table[0,{48}]

wo["stress-free lower surface..."]
(* J33~stress-free lower surface *)

(* Each coefficient of psi[i] must vanish independently *)

j33lower = j33[n]
j33lower = ExpandAll[j33lower]

(* Gather coefficients of psil[i] *)

Do[ j33lower = Collect[j33lower,psilill, {i,12}]

psicoef = Table[0,{12}]

Do[ psicoef[[i]] =
Coefficient[j33lower,psilil], {i,12}]

(* How, for each coefficient of psi[i], get coefficients of a3k[i], b3k[il,
adk[il, b4ak[i] *)

clist = {

a30[n],a31[n],a32[n],a33[n],a34[n],a35[n],a36[n],a37[n],a38[n],

a39[n],a41[n],a42{n] ,a43[n],a44[n],b30[n],b31[n],b32[n],b33[n],

b34[n],b35[n],b36[n],b37[n],538[n] ,b39[n],b41[n],b42[n],b43[n],b44[n]}

tcoefmat = Table[0,{12},{Length[clist]}]

Dol
Dol tcoefmat[[i,jl] =
Coefficient[Collect[psicoef[[i]],clist],clist[[j]11],
{j,Length[clist]}],
{i,12}]

(* calculate the rhs vector *)

rhs = psicoef

Do[ rhsf{[il] = rhs[[il] - tcoefmat[[i]].clist, {i,12}]
rhs = Simplify[rhs]

rhs = -rhs

Dol Dol bigmat[[i,jl] = tcoefmat[[i,jl], {j,24} 1, {i,12}]
Dol rvec[[il] = rhs[[il], {i,12} ]

wo["stress continuity at interface..."]
(* J33-match at interface *)
(* Each coefficient of psi[i] must vanish independently *)

j33i = bs11[n](gb13[n+1] - gb13[n]) + bs22[n](gb23[n+1] - gqb23[n]) +
2%bs12[n] (gb36[n+1] - ¢qb36[n]) + qb33[n+1]*bs33[n+1] - qb33[n]l*bs33[n]

(* Gather coefficients of psi[i] *)

Dol j33i = Collect[j33i,psilil}, {i,12}]

psicoefi = Table[0,{12}]

Do[ psicoefi[[k]] =
Coefficient[j33i,psilk]], {k,12}]

(* How, for each coefficient of psil[il, get coefficients of a3k[i], b3k[il,
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ad4k[i], b4k[i], a3k[i+1] , etc... %)
clisti = {
a30[n],a31[n],a32[n],a33[n],a34[n] ,a35[n],a36[n],a37[n],a38[n] s
a39[nl,a41[n],a42[n],a43[n],a44[n] ,b30[n],b31[n],b32[n] ,b33[n],
b34[n],b35[n],b36[n] ,b37[n],b38[n],b39[n],
b41[n],b42[n],b43[n] ,b44[n],
a30[n+1],a31[n+1] ,a32[n+1],a33[n+1] ;a34[n+1],a35[n+1],236[n+1] )
a37[n+1],a38[n+1],a39[n+1] ,a41[n+1],a42[n+1],243[n+1],ad4 [n+1] R
b30[n+1],b31 [n+1] ,b32[n+1] ,b33[n+1],b34[n+1] ,b35[n+1] ,b36[n+1] N
b37[n+1],b38[n+1] ,b39[n+1] ,b41[n+1],b42[n+1],b43[n+1] ,b44[n+11}

tcoefmati = Table[0,{12},{Length[clisti]}]

Dol
Dol tcoefmatil(k,j]] =
Coefficient[Collect[psicoefi[[k]],clisti],clistil[j11],
{j,Length[clisti]}],
{x,12}]

(* calculate the rhsi vector #*)

rhsi = psicoefi

Do[ rhsi[[k1] = rhsil[k]] - tcoefmatil[[k]].clisti, {k,12}]

rhsi = Simplify[rhsi]

rhsi = -rhsi

rhsi = rhsi /. {g14[n+1] -> gi4[n], g24[n+1] -> g24[n],
g15[n+1] -> g15[n], g25[n+1] -> g25[nl}

rhsi = Simplify[rhsi]

thsi = Collect[rhsi,{g14[n],g24[n],g15[n],g25[n]}]

rhsi = Collect[rhsi,{rk4d,rk5d}]

Do[ Dol bigmat[[i+12,j]] = tcoefmatill[i,jI1, {j,48} 1, {i,12}]
Do[ rvec[[i+12]1] = rhsil[ill, {i,12} ]

wo["displacement continuity at interface..."]

(* ... and continuity of displacements at the interface %)
(* Each coefficient of psili] must vanish independently %)
u3d = u3[n2] - uw3[n+12]

(* Gather coefficients of psil[i] *)

Do[ u3d = Collect[u3d,psilil], {i,12}]

psicoefd = Table[0,{12}]

Do[ psicoefd[[k]] =
Coefficient[u3d,psi[k]1], {k,12}]

(* Now, for each coefficient of psili], get coefficients of a3k[i], b3k[i],
adk[i], bak[il, a3k[i+1], etc... %)

clistd = {

a30[n],a31[n],a32[r],a33[n],a34[n},a35[n],a36[n] ,a37[n],a38[n],a39[n],

a40[n],ad1[n],

b30[n],b31[n],b32[n],b33[n] ,b34[n],b35[n],b36[n] ,b37[n] ,b38[n],b39[n],

b4o[n],b41[n],

a30[n+1],a31[n+1],a32[n+1] ,a33[n+1],a34[n+1] ,a35[n+1],a36[n+1],a37[n+1],

a38[n+1],a39[n+1],

a40[n+1],a41[n+1],

b30[n+1],b31[n+1] ,b32[n+1],b33[n+1],b34[n+1] ,b35[n+1] ,b36[n+1],
b37[n+1],b38[n+1] ,b39[n+1],

b40[n+1],b41[n+1]}

tcoefmatd = Table[0,{12},{Length[clistd]}]




Dol
Do[ tcoefmatd[[k,jl1] =
Coefficient[Collect[psicoefd[[k]],clistd],clistd[[j]11],
{j,Lengthlclistd]}],
{x,12}]

(* calculate the rhsd vector *)

rhsd = psicoefd

Do[ rhsd[[k]] = rhsd[[k]] - tcoefmatd[[k]].clistd, {k,12}]
rhsd = Simplify[rhsd] .

rhsd = -rhsd

Dol Dol bigmat[[i+24,j]] = tcoefmatd[[i,j1], {j,48} 1, {i,12}]
Dol rvec[[i+241] = rhsd[[il], {i,12} ]

wo["stress-free upper surface..."]

(* 333-stress-free upper surface *)

(* Each coefficient of psi[i] must vanish independently *)
j33upper = j33[n3] + p$uppér

(* Gather coefficients of psil[i] *)

Do[ j33upper = Collect[j33upper,psilill, {i,12}]

psicoef = Table[0,{12}]

Dol psicoef[[il] =
Coefficient[j33upper,psilil], {i,12}]

(*x Now, for each coefficient of psi[il, get coefficients of a3k[il, b3k[il,
adk[il, b4k[i] *)

clist = {

a30[n],a31[n],a32[n],a33[n],a34[n},a35[n],a36[n],a37[n],a38[n],a39[n],

a40[n] ,a41[n],

b30[n],b31[n],b32[n],b33[n],b34[n] ,b35[n],b36[n],b37[n],b38[n] ,b39[n],

b40[n] ,b41[n]}

tcoefmat = Table[0,{12},{Length[clist]}]
Dol

Do[ tcoefmat[[i,jl] =

Coefficient[Collect [psicoef[[i]],clist],clist[[j]11]1,
{j,Length[clist]}],

{i,121]
(* calculate the rhs vector *)
rhs = psicoef
Do[ rhs[[il] = rhs[[i]l] - tcoefmat[[il].clist, {i,12}]
rhs = Simplify[rhs]

rhs = -rhs

Dol Dol bigmat[[i+36,j+24]] = tcoefmat[[i,j]1], {j,24} 1, {i,12}]
Dol rvec[[i+36]] = rhs[[il1, {i,12} ]

Abort[];
wo["solving linear system..."]
ans = LinearSolve[bigmat,rvec]

stmp = OpenWrite["ans.f", FormatType -> FortranForm]
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Do[ Write[stmp,i,’=’,ans[[i]] 1,{i,48}]
Close[stmp]

Write[$Output,done"]

B.5 Development of the Stiffness Matrices

The following code was used to develop the stiffness matrices associated with the 44 DOF
element.

Clear[“@"]
SetOptions[$0utput ,PageWidth->133]

dmat={

{hrm[1,1] ,hrml1,2] ,hrm[1,3],0,0,0,0,0,0,0,0,hrm[2,1] ,hrm[2,2] ,hrm[2,3],0,0,0,0,0,0,0,0,
hrm[3,1],hrm[3,2] ,hrm[3,31,0,0,0,0,0,0,0,0,hrm[4,1] ,hrm[4,2] ,hrm[2,3],0,0,0,0,0,0,0,0},

{hrmr[1,1] ,hrmr[1,2] ,hrmr[1,3],0,0,0,0,0,0,0,0,hrmr [2,1] ,hrmr [2,2] ,hrmr [2,3],0,0,0,0,0,0,0,0,
hrmr[3,1] ,hrmr [3,2] ,hrmr[3,3],0,0,0,0,0,0,0,0, hrmr [4,1] ,hrmr[4,2] ,hrmr [4,3],0,0,0,0,0,0,0,0},
{hrms[1,1],hms[1,2] ,hrms[1,3],0,0,0,0,0,0,0,0,hrms[2,1] ,hrms [2, 2] ,hxms[2,3],0,0,0,0,0,0,0,0,
hrms[3,1] ,hrms[3,2] ,hrms[3,3],0,0,0,0,0,0,0,0, hrms[4,1] ,hrms[4,2] ,hrms[4,31,0,0,0,0,0,0,0,0},
{hrmrr[1,1] ,hrmrr[1,2],0,0,0,0,0,0,0,0,0, , hrmrr[2,1] ,hrmrr[2,2],0,0,0,0,0,0,0,0,0,
hrmrr{3,1],hrmrr[3,23,0,0,0,0,0,0,0,0,0, , hrmrr[4,1] ,hrmrr[4,2],0,0,0,0,0,0,0,0,0},

{hrmrs[1,1] ,hrmrs[1,2},hrmrs[1,3},0,0,0,0,0,0,0,0,hrmrs[2,1] ,hrmrs[2,2] ,hrmrs[2,3},0,0,0,0,0,0,0,0,
hrmrs[3,1],hrmrs[3,2] ,hrmrs[3,31,0,0,0,0,0,0,0,0,hrmrs [4,1] ,hrmrs[4,2] ,hrmrs[4,3],0,0,0,0,0,0,0,0},
{hrmss[1,1],0,hmss(1,3],0,0,0,0,0,0,0,0,hrmss[2,1],0,hrmss[2,3],0,0,0,0,0,0,0,0,
hrmss[3,1],0,hrmss[3,3],0,0,0,0,0,0,0,0,hrmss[4,1] ,0,hrmss[4,3],0,0,0,0,0,0,0,0},

{0,0,0,hrm[1,1] ,hrm[1,2] ,hrm[1,3],0,0,0,0,0,0,0,0,hrm[2,1] ,hrm[2,2] ,hrm[2,3] ,0,0,0,0,0,
0,0,0,hrm[3,1] ,hrm[3,2] ,hrm[3,31,0,0,0,0,0,0,0,0,hrm[4,1] ,hrm[4,2] ,hrm[4,3],0,0,0,0,0},
{0,0,0,hrmr[1,1] ,hrmr[1,2] ,hrmr [1,31,0,0,0,0,0,0,0,0,hrmr[2,1] ,hrmr [2, 2] ,hrmr[2,3],0,0,0,0,0,
0,0,0,hrmr[3,1] ,hrmr[3,2] ,hrmr[3,31,0,0,0,0,0,0,0,0  hrmr [4,1] ,hrmr[4,2] ,hrmr [4,3],0,0,0,0,0},
{0,0,0,hrms[1,1],hrms[1,2} ,hrms[1,3],0,0,0,0,0,0,0,0,hrms[2,1] ,hrms [2,2] ,hrms[2,3],0,0,0,0,0,
0,0,0,hrms{3,1] ,hrms[3,2] ,hrms[3,3],0,0,0,0,0,0,0,0,hrms[4,1] ,hrms[4,2] ,hrms[4,3],0,0,0,0,0},
{0,0,0,hrmrr[1,1] ,hrmrr[1,2],0,0,0,0,0,0,0,0,0,hrmrr[2,1] ,hemrr[2,2],0,0,0,0,0,0,

0,0,0,hrmrr[3,1] ,hrmrr[3,21,0,0,0,0,0,0,0,0,0,hrmrr[4,1] ,hrmrr[4,2],0,0,0,0,0,0},

{0,0,0,hrmrs[1,1] ,hrmrs[1,2] ,hrmrs[1,3],0,0,0,0,0,0,0,0, hrmrs[2,1] ,hrmrs[2,2] ,hrmrs[2,31,0,0,0,0,0,
0,0,0,hrmrs[3,1] ,hrmrs[3,2] ,hrmrs[3,3],0,0,0,0,0,0,0,0 ,hrmrs[4,1] ,hrmrs[4,2] ,hrmrs[4,31,0,0,0,0,0},
{0,0,0,hrmss[1,1],0,hrmss[1,31,0,0,0,0,0,0,0,0,hrmss[2,1],0,hrmss[2,3],0,0,0,0,0,
0,0,0,hrmss[3,1],0,hmss[3,31,0,0,0,0,0,0,0,0,hrmss[4,1] ,0,hrmss [4,3],0,0,0,0,0},
{0,0,0,0,0,0,hrm[1,1] ,hrm[1,2] ,hrm[1,3],0,0,0,0,0,0,0,0,hrm[2,1] ,hrm[2, 2] ,hrn[2,3],0,0,
0,0,0,0,0,0,hrm[3,1] ,hrm[3,2] ,hrm[3,3],0,0,0,0,0,0,0,0,hrm[4,1] ,hrm[4,2] ,hrm[4,3],0,0},
{0,0,0,0,0,0,hrmr[1,1] ,hrmr[1,2] ,hrmr[1,3] ,0,0,0,0,0,0,0,0,hrmr[2,1] ,hrmr[2,2] ,hrmr[2,3],0,0,
0,0,0,0,0,0,hrmr[3,1] ,hrmr[3,2] ,hrmr[3,3],0,0,0,0,0,0,0,0,hrmr[4,1] ,hrmr[4,2] ,hrmr[4,3],0,0},
{0,0,0,0,0,0,hrms[1,1] ,hrms[1,2] ,hrms[1,3] ,0,0,0,0,0,0,0,0,hrms[2,1] ,hrms[2,2] ,hrms[2,3],0,0,
0,0,0,0,0,0,hrms[3,1] ,hrms[3,2] ,hrms[3,3],0,0,0,0,0,0,0,0,hrms[4,1] ,hrms[4,2] ,hrms[4,3],0,0},
{0,0,0,0,0,0,hrmrr[1,1] ,hrmrr[1,2],0,0,0,0,0,0,0,0,0,hrmrr[2,1] ,hrmrr[2,2],0,0,0,
0,0,0,0,0,0,hrmrr[3,1] ,hrmrr(3,2],0,0,0,0,0,0,0,0,0,hrmrr[4,1] ,hrmrr[4,2] ,0,0,0},
{0,0,0,0,0,0,hrmrs[1,1] ,hrmrs[1,2] ,hrmrs[1,3],0,0,0,0,0,0,0,0,hrmrs[2,1] ,hrmrs[2,2] ,hrmrs[2,3],0,0,
0,0,0,0,0,0,hrmrs[3,1] ,hrmrs[3,2] ,hrmrs(3,3],0,0,0,0,0,0,0,0,hrmrs[4,1] ,hrmrs[4,2] ,hrmrs[4,3],0,0},
{0,0,0,0,0,0,hrmss[1,1],0,hrmss[1,3] ,0,0,0,0,0,0,0,0,hrmss[2,1],0,hrmss[2,3],0,0,
0,0,0,0,0,0,hrmss[3,1],0,hrmss[3,3],0,0,0,0,0,0,0,0,hrmss[4,1],0,hrmss[4,3],0,0},
{0,0,0,0,0,0,0,0,0,z1in[1] ,0,0,0,0,0,0,0,0,0,0,z1in[2],0,
0,0,0,0,0,0,0,0,0,2z1in[3]},0,0,0,0,0,0,0,0,0,0,z1in[4],0},
{0,0,0,0,0,0,0,0,0,21inr[1],0,0,0,0,0,0,0,0,0,0,z1inr[2],0,
0,0,0,0,0,0,0,0,0,21inr(3],0,0,0,0,0,0,0,0,0,0,z1inr[4],0},

{0,0,0,0,0,0,0,0,0,z1ins[1] ,0,0,0,0,0,0,0,0,0,0,z1ins[2],0,
0,0,0,0,0,0,0,0,0,21ins(3],0,0,0,0,0,0,0,0,0,0,z1ins[4] ,0},

{0,0,0,0,0,0,0,0,0,0,z1in[1] ,0,0,0,0,0,0,0,0,0,0,z1in(2],
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0,0,0,0,0,0,0,0,0,0,2z1in[3],0,0,0,0,0,0,0,0,0,0,z1in[4]},

{0,0,0,0,0,0,0,0,0,0,2zLinr[1],0,0,0,0,0,0,0,0,0,0,zlinr[2],
0,0,0,0,0,0,0,0,0,0,2z1inr[3],0,0,0,0,0,0,0,0,0,0,z1inr[4]},
{0,0,0,0,0,0,0,0,0,0,z1ins[1],0,0,0,0,0,0,0,0,0,0,z1ins[2],
0,0,0,0,0,0,0,0,0,0,2z1ins[3],0,0,0,0,0,0,0,0,0,0,z1ins[4]}}

psim=Table[0,{12},{24}]
psim{[1,1]]=psil1,1]
psim[[1,2]]=psil1,2]
psim[[1,3]]=psill,3]
psim[[1,7]1]1=psil1,7]
psim[[1,8]]=psil1,8]
psim[[1,9]1=psi[1,9]

psim[[1,13]]=psil1,13]
psim[[1,14]]=psil1,14]
psim[[1,15]] = psi[1,15]
psim[[2,1]] = psi[2,1]
psim[[2,2]] = psil2,2]
psim[[2,3]] = psif2,3]
psim[[2,7]] = psil2,7]

psim[[2,8]] = psi[2,8]
psim[[2,9]] = psi[2,9]
psim[[2,13]] = psi[2,13]
psim[[2,14]] = psi[2,14]
psim[[2,15]] = psi[2,15]

psim[[3,1]1 = psil3,1]
psim[[3,2]] = psil3,2]
psim[[3,3]1] = psil3,3]
psim[[3,7]] = psil3,7]
psim[[3,8]] = psil3,8]
psim[[3,9]1] = psi[3,9]
psim[[3,13]1] = psil3,13]
psim[[3,14]] = psil[3,14]

psim[[3,15]] = psi[3,15]
psim[[4,1]] = psil4,1]
psim[[4,2]] = psil4,2]
psim[[4,3]1] = psil4,3]
psim[[4,4]1] = psil4,4]
psim[[4,6]1] = psil[4,5]
psim[[4,7]] = psi[4,7]
psim[[4,8]] = psi[4,8]
psim[[4,9]] = psil[4,9]
psim[[4,10]] = psi[4,10]
psim[[4,11]1] = psi[4,11]
psim[[4,13]] = psi[4,13]
psim[[4,14]] = psil4,14]
psim[[4,15]] = psil4,15]
psim[[4,16]] = psi[4,16]
psim[[4,17]1] = psi[4,17]
psim[[5,1]] = psi[5,1]
psim[[5,2]1] = psi[5,2]
psim[[5,31] = psil5,3]

psim[[5,5]] = psil5,5]
psim[[5,6]1 = psi[5,6]
psim[[5,7]] = psi[5,7]
psim[[5,8]1] = psil5,8]
psim[[5,9]1] = psil5,9]

psim[[5,11]1] = psi[5,11]
psim[[5,12]] = psil5,12]
psim[[5,13]] = psi[5,13]
psim[[5,14]] = psi[5,14]
psim[[5,15]] = psi[5,15]
psim[[5,17]1] = psil5,17]
psim[[5,18]] = psi[5,18]
psim[[6,1]1] = psil6,1]
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psim[[6,2]1]1 = psi[6,2]
psim[[6,3]1] = psil6,3]
psim[[6,4]1]1 = psil[6,4]
psim[[6,5]] = psils6,5]
psim[[6,6]] = psil6,6]
psim[[6,7]1] = psils6,7]
psim[[6,8]] = psil6,8]
psim[[6,9]] = psi[6,9]
psim[[6,10]1] = psi[6,10]
psim[[6,11]] = psil[6,11]
psim[[6,12]1] = psi[6,12]
psim[[6,13]] = psi{6,13]
psim[{6,14]] = psil6,14]
psim[{6,15]] = psil6,15]
psim[[6,16]] = psi[6,16]
psiml{6,171] = psi[6,17]
psim[[6,18]] = psi[6,18]
psim[[7,20]] = 1
psim[[8,21]] = 1
psim[[9,23]] = 1
psim[[10,24]] = 1
psim[[11,19]] = 1
psim[[12,22]] = 1

upsm = Table[0,{24},{24}]
upsm[[1,1]] = ups[1,1]
upsm[[1,2]] = ups([1,2]
upsm[[1,3]] = ups[1,3]
upsm[[1,4]] = ups[1,4]
upsm[[1,5]] = ups[1,5]
upsm[[1,6]] = ups[1,6]
upsm[[1,7]] = ups[1,7]
upsm[[1,8]] = ups[1,8]
upsm[[1,9]] = ups[1,9]
upsm[[1,10]] = ups[1,10]
upsm[[1,11]1] = ups[1,11]
upsm[[1,12]1] = ups[1,12]
upsm[[1,13]] = ups[1,13]
upsm[[1,14]] = ups[1,14]
upsm[[1,15]] = ups[1,15]
upsm[[1,16]] = ups[1,16]
upsm[[1,17]] = ups{1,17]
upsm[[1,18]] = ups[1,18]
upsm[{2,1]] = ups[2,1]
upsm[[2,2]] = ups[2,2]
upsm[[2,3]] = ups[2,3]
upsm[[2,4]] = ups{2,4]
upsm[[2,5]] = ups[2,5]

upsm{[2,6]] = ups(2,6]
upsm[[2,7]] = ups[2,7]
upsm[[2,8]] = ups[2,8]
upsm[[2,91] = wps[2,9]
upsm[[2,10]] = ups[2,10]
upsm[[2,11]] = ups[2,11]
upsm[[2,12]1] = ups[2,12]
upsm[[2,12]] = ups[2,12]
upsm[[2,14]1] = ups[2,14]
upsm[[2,15]] = ups[2,15]
upsm[[2,16]] = ups[2,16]
upsm[[2,17]1] = uwps[2,17]
upsm[[2,18]] = ups[2,18]
upsm[[3,1]] = ups[3,1]
upsm[[3,2]] = ups[3,2]
upsm[[3,3]] = ups[3,3]
upsm[[3,4]] = ups(3,4]
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upsm[[3,5]]
upsm[[3,6]]
upsm[[3,7]]
upsm[[3,8]]
upsm[[3,9]]
upsm[[3,10]]
upsm[[3,11]]
upsm[[3,12]]
upsm[[3,13]]
upsm[[3,14]]
upsm[[3,15]]
upsm[[3,16]]
upsm[[3,17]]
upsm[{3,18]]
upsm[{4,1]]
upsm[[4,2]]
upsm[[4,3]]
upsm[[4,4]]
upsm{[4,5]]
upsm{[4,6]]
upsm[[4,7]]
upsm[[4,8]]
upsm[[4,9]]
upsm[[4,10]]
upsm[[4,11]]
upsm[[4,12]]
upsm[[4,13]]
upsm[[4,14]]
upsm[[4,15]]
upsm[[4,16]]
upsm[[4,17]]
upsm[[4,18]]

ounononomonon o

ups[3,5]
ups{3,6]
ups[3,7]
ups{3,8]
ups[3,9]
ups{3,10]
ups{3,11]
ups{3,12]
ups[3,13]
ups[3,14]
ups[3,15]
ups{3,16]
ups{3,17]
ups[3,18]
ups[4,1]
ups[4,2]
ups[4,3]
ups[4,4]
ups[4,5]
ups[4,6]
ups[4,7]
ups[4,8]
wps[4,9]
ups[4,10]
ups[4,11]
ups[4,12]
ups[4,13]
ups[4,14]
ups[4,15]
ups[4,16]
ups[4,17]
ups[4,18]

upsm[[5,1]] = ups[5,1]

upsm[[5,2]]
upsm[[5,3]]
upsm[[5,4]]
upsm[[5,5]1]
upsm[[5,6]1]
upsm[[5,7]]
upsm[[5,8]1]
upsm[[5,9]]
upsm[[5,10]]
upsm[[5,11]1]
upsm[[5,12]]
upsm[[5,13]]
upsm[[5,14]]
upsm[[5,15]]
upsmf[5,16]]
upsm{[5,17]1]
upsm[[5,18]]
upsm[[6,1]]
upsm{[6,2]]
upsm[[6,3]]
upsm[[6,4]]
upsm[[6,5]]
upsm[[6,6]]
upsm[[6,7]]
upsm[[6,8]]
upsm[[6,9]1]
upsm[[6,10]]
upsm[[6,11]]
upsm[[6,12]]
upsm[[6,13]]
upsm[[6,14]]
upsm[{6,15]]

ups[5,2]
ups[5,3]
ups[5,4]
ups[5,5]
ups[5,6]
ups[5,7]
ups[5,8]
ups[5,9]
ups[5,10]
ups[5,11]
ups{5,12]
ups{5,13]
ups([5,14]
ups[5,15]
ups [5,16]
ups[5,17]
ups[5,18]
ups[6,1]
ups[6,2]
ups[6,3]
ups[6,4]
ups[6,5]
ups[6,6]
ups[6,7]
ups[6,8]
ups[6,9]
ups[6,101
ups[6,11]
ups[6,12]
ups[6,13]
ups[6,14]
ups[6,15]
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upsm[[6,16]1] = ups[6,16]
upsm[[6,17]] = ups([6,17]
upsm[[6,18]] = ups[6,18]
upsm[[7,11] = ups[7,1]
upsm[[7,2]1] = ups[7,2]
upsm[[7,33] = ups[7,3]
upsm[[7,4]] = ups[7,4]
upsm[[7,5]] = ups([7,5]
upsm[[7,6]] = ups([7,6]

upsm[[7,7]] = ups[7,7]
upsm[[7,8]] = ups[7,8]
upsm[[7,9]] = ups[7,9]

upsm[[7,10]]
upsm[[7,11]]
upsm[[7,121]
upsm[[7,13]]
upsm[[7,14]]
upsm[[7,151]
upsm[[7,16]1]
upsm[[7,17]]
upsm[[7,18]]
upsm[[8,1]]
upsm[[8,2]]
upsm[[8,3]]
upsm[[8,41]
upsm[[8,5]1]
upsm[[8,6]]
upsm[[8,7]]
upsm[[8,8]]
upsm[[8,9]]
upsm[[8,10]1]
upsm[[8,11]]
upsm[[8,12]]
upsm[[8,13]]
upsm[[8,14]]
upsm[{8,15]]
upsm[{8,16]]
upsn[{8,17]]
upsm{[8,18]]
upsm[[9,1]] =
upsmf[9,2]] =
upsm{[9,3]1] =
upsm[[9,4]] =
upsm[[9,5]] =
upsm[[9,6]]
upsm[[9,7]]
upsm[[9,8]]
upsm[[9,9]]
upsm[[9,10]1]
upsm[[9,11]]
upsm[[9,12]1]
upsm[[9,13]]
upsm[[9,14]]
upsm[[9,15]]
upsm[[9,16]]
upsm[[9,17]]
upsm[[9,18]]
upsm[[10,1]]
upsm[[10,2]]
upsm[[10,3]]
upsm[[10,4]]
upsm[[10,5]]
upsm[{10,6]]
upsm{[10,7]]
upsm{[10,8]]

A Tnonowon nounnn

ups[7,10]
ups[7,11]
ups[7,12]
ups[7,13]
ups[7,14]
ups[7,15]
ups[7,16]
ups[7,17]
ups[7,18]
ups[8,1]
ups[8,2]
ups[8,3]
ups[8,4]
ups[8,5]
ups[8,6]
ups[8,7]
ups[8,8]
ups[8,9]
ups[8,10]
ups[8,11]
ups[8,12]
ups{8,13]
ups[8,14]
ups{8,15]
ups{8,16]
ups{8,17]
ups[8,18]
ups[9,1]
ups{9,2]
ups[9,3]
ups[9,4]
ups[9,5]
ups[9,6]
ups[9,7]
ups[9,8]
ups[9,9]
ups[9,10]
ups[9,11]
ups[9,12]
ups[9,13]
upsf9,14]
ups[9,15]
ups[9,16]
ups[9,17]
ups[9,18]
ups[10,1]
ups[10,2]
ups[10,3]
ups[10,4]
ups[10,5]
ups[10,6]
ups[10,7]
ups[10,8]
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upsm[[10,9]1] = ups[10,9]
upsm[[10,10]] = ups[10,10]
upsm[[10,11]1] = ups[10,11]
upsm[[10,12]] = ups[10,12]
upsm[[10,13]] = ups[10,13]
upsm[[10,14]] = ups[10,14]
upsm[[10,15]] = ups[10,15]
upsm[[10,16]] = ups[10,16]
upsm[[10,17]] = ups[10,17]
upsm[[10,18]] = ups[10,18]
upsm[[11,1]] = ups[11,1]
upsm[[11,2]] = ups[11,2]
upsm[[11,3]] = ups[11,3]
upsm[[11,4]] = ups[11,4]
upsm[[11,5]] = ups[11,5]
upsm[[11,6]] = ups[11,6]
upsm[[11,7]] = ups[11,7]
upsm[[11,8]] = ups[11,8]
upsm[[11,9]] = ups[11,9]
upsm[[11,10]] = ups[11,10]
upsm[{11,11]] = wps[11,11]

upsml[[11,12]] = wps[11,12]
upsm[[11,13]] = ups[11,13]
upsm[[11,14]] = ups[11,14]

upsm{[11,15]] = wps[11,15]
upsm[[11,16]] = wps[11,16]
upsm[[11,17]] = wps[11,17]
upsm{[11,18]] = ups[11,18]

upsm[[12,1]] = ups[12,1]
upsm[[12,2]] = ups[12,2]
upsm[[12,3]] = ups[12,3]
upsm[[12,4]] = ups[12,4]
upsm[[12,5]] = ups[12,5]
upsm[[12,6]1] = ups[12,6]
upsm[[12,7]1] = ups[12,7]
upsm[[12,81] = ups[12,8]
upsm[[12,9]] = ups[12,9]
upsm[[12,10]] = ups[12,10]
upsm[[12,11]] = ups[12,11]
upsm[[12,12]] = ups[12,12]
upsm[[12,13]] = ups[12,13]
upsm[[12,14]] = ups([12,14]

upsm{[12,15]] = ups[12,15]
upsm[[12,16]] = ups[12,16]
upsm[[12,171] = ups[12,17]
upsm[[12,18]1] = ups[12,18]

upsm[[13,1]1] = ups[13,1]
upsm[[13,2]] = ups[13,2]
upsm[[13,3]] = ups[13,3]
upsm[[13,4]] = ups[13,4]
upsm[[13,5]] = ups[13,5]
upsm[[13,6]1] = ups[13,6]
upsm[[13,7]] = ups[13,7]
upsm{[13,8]] = ups[13,8]
upsm{[13,9]] = ups[13,9]

upsm[[13,10]] = ups[13,10]
upsm[[13,11]] = ups[13,11]

upsm[[13,121] = ups[13,12]
upsm[[13,13]] = ups[13,13]
upsm[[13,14]1] = ups[13,14]
upsm[[13,15]] = ups[13,15]
upsm[[13,16]] = ups[13,16]
upsm[{13,17]1] = ups[13,17]
upsm{[13,18]] = ups[13,18]

upsm[[14,1]] = ups[14,1]
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upsm[[14,2]]
upsm[[14,3]]
upsm[[14,4]1]
upsm[[14,5]]
upsm[[14,6]]
upsm[[14,7]]
upsm[[14,8]]
upsm[[14,9]]
upsm[[14,101]
upsm[[14,11]]
upsm[[14,12]]
upsm[[14,13]]
upsm{[14,14]]
upsmf{14,15]]
upsm[{14,16]]
upsm[f14,17]]
upsm[[14,18]]
upsm[[15,1]]
upsm[[15,2]]
upsm[[15,3]]
upsm[[15,4]]
upsm[[15,5]]
upsm[[15,6]]
" upsm[[15,71]
upsm[[15,8]1]
upsm[[15,91]
upsm[[15,10]]
upsm[[15,11]]
upsm[[15,12]]
upsm[[15,13]]
upsm[[15,141]
upsm[[15,15]]
upsm[[15,16]1]
upsm[[15,17]]
upsm[[15,18]]
upsm[[16,11]
upsm[[16,2]]
upsm[[16,3]]
upsm[[16,4]]
upsm[[16,5]]
upsm[[16,6]]
upsm[[16,7]]
upsm[[16,8]]
upsm[[16,9]]
upsm[[16,10]]
upsm[[16,11]]
upsm[[16,12]]
upsm[[16,13]]
upsm[[16,14]]
upsm[[16,15]]
~upsm[[16,16]]
upsm[[16,17]1]
upsm[[16,18]1]
upsm[[17,1]]
upsm[{17,2]]
upsm[[17,3]]
upsm{[17,4]]
upsm{[17,5]]
upsm[[17,6]]
upsm[[17,7]1]
upsm{[17,8]]
upsm[[17,9]]

fon % nonunnn mmnnn e unn {1 T O I (N [ O 1}

waonwnonwouwn

ups[14,2]
ups[14,3]
ups[14,4]
ups[14,5]
ups[14,6]
ups[14,7]
ups[14,8]
ups[14,9]
= ups[14,10]
= ups[14,11]
= ups[14,12]
= ups[14,13]
= ups[14,14]
= ups([14,15]
ups{14,16]
ups[14,17]
ups{14,18]
ups[15,1]
ups[15,2]
ups[15,3]
ups[15,4]
ups[15,5]
ups[15,6]
ups[15,7]
ups[15,8]
ups[15,9]
ups[15,10]
ups[15,11]
ups[15,12]
ups[15,13]
ups[15,14]
ups[15,15]
ups[15,16]
ups[15,17]
ups[15,18]
ups[16,1]
ups[16,2]
ups[16,3]
ups[16,4]
ups[16,5]
ups[16,6]
ups[16,7]
ups[16,8]
ups[16,9]
ups[16,10]
ups[16,11]
ups[16,12]
ups[16,13]
ups[16,14]
ups[16,15]
ups[16,16]
ups[16,17]
ups[16,18]
ups[17,1]
ups{17,2]
ups[17,3]
ups[17,4]
ups[17,5]
ups[17,6]
ups[17,7]
ups[17,8]
ups[17,9]

wnownnnonnn

upsm[[17,10]1] = ups[17,10]
upsm[[17,111] = ups[17,11]
upsm[[17,12]] = ups[17,12]
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upsm[[17,13]] = ups[17,13]
upsm[[17,14]] = ups[17,14]
upsm[[17,15]] = ups[17,15]
upsm[[17,16]] = ups[17,16]
upsm[[17,17]] = ups[17,17]
upsm[[17,18]] = ups[17,18]
upsm[[18,1]] = ups[18,1]
upsm[[18,2]] = ups[18,2]
upsm[[18,3]] = ups[18,3]
upsm[[18,4]] = ups[18,4]
upsm{[18,5]] = ups[18,5]
upsm[[18,6]] = ups[18,6]
upsm[[18,7]] = ups[18,7]
upsm[[18,8]] = ups[18,8]
upsm[[18,9]1] = ups[18,9]
upsm[[18,10]] = ups[18,10]
upsm[[18,11]] = ups[18,11]
upsm[[18,12]] = ups[18,12]
upsm[[18,13]] = ups[18,13]
upsm[[18,14]] = ups[18,14]
upsm[{18,15]] = ups[18,15]
upsm{[18,16]] = ups[18,16]
upsm[[18,17]1] = ups[18,17]
upsm[[18,18]] = ups[18,18]

eln = Transpose[dmat].Transpose[psim].phimat.psim.dmat
tanstif = Transpose[dmat].(Transpose[psim] .phimat.psim + upsm) .dmat

edvec = Arrayl[eld,{44}]

uvec = dmat.edvec;

stmp2 = OpenWrite["uvec.out",FormatType->FortranForm]
Do[ Write[stmp2, "uvec(",i,") = ",uvec[[il] 1, {i,24}]
Close[stmp2] ;

stmpl = OpenWrite["stiff.out" ,FormatType->FortranForm]
eleind = Transpose[psim].phimat.psim;

elem = Arrayl[ele,{24,24}]
phimat = Array[phi,{12,12}]

stif = Transpose[dmat].elem.dmat
psiv = Array[psivec,{12}]
dumi = phimat.psiv;

Dol Write[stmp1,"dum1(",i,”) = ", dumi[[i]] ], {i,12}]
Clear["dumi”] :

dum = Array[dumi,{12}]

dum2 = Transpose[psim].dum

Do[ Write[stmp1,"dum2(",i,") = ",dum2[[i]] ], {i,24}]
Clear["dum2"]

dum = Array[dum2,{24}]

elr = Transpose[dmat].dum

Dol Write[stmpl,"elr(",i,") = ",elr[[il] ], {i,44}]

stmp = OpenWrite["eqforce", FormatType -> FortranForm]

phimat = Array{phi,{12,12}]

tmp = phimat.psim

tmpl = Array[dumi,{12,24}]

Do[ Do[ If[ ToString[tmpl[i,jl] 1 == vov, o,
Write[stmp,"dum1(",i,”,",j,") = ",tmp{[i,j11 1 1, {j,24}1, {i,12}]
Dol Dol If[ tmp[[i,jl] == 0, tmpi[[i,j1] = 0, 01, {j,24}1, {i,12} 1

tmp2 = Transpose[psim] .tmpl

Do[ Do[ If[ ToString[tmp2[[i,j1] 1 == "o“, O,
Write[stmp,"dum2(",i,",",j,") = ",tmp2[[i,j11 1 1, {j,243}1, {i,24}]
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tmp3 = Array[dum2,{24,24}]
Dol Dol If[ tmp2[[i,jl] == 0, tmp3[[i,jl] = 0, 01, {j,24}], {i,24} ]

tmp4 = Transpose[dmat] .tmp3

Dol Do[ If[ ToString[tmp4[[i,jl] ] == “o", O,
Write[stmp,"dum3(",i,",",j,") = ",tmpa[[i,j11 1 1, {j,24}]1, {i,44}]
tmpS = Array[dum3,{44,24}]

Dol Dol If[ tmp4[[i,jl] == 0, tmp5[[i,j1] = 0, 0], {j,24}], {i,44} ]

tmp6 = tmp5.dmat
Dof Do[ If[ ToString[tmp6[[i,jl] 1 == "o", O,
Write[stmp,"zkint(",i,",”,j,") = “,tmp6[[i,51]1 1 1, {j,44}], {i,44}]

Close[stmp]
Close[stmpi]

B-28




Appendiz C. The Computer Program

The program used for the cu’rrent analysis, called JAGS, for ‘Jaumann Analysis of General
Shells’, is written in FORTRAN. The vast majority of the code is devoted to developing the
transformation matrix [T] and the deformed curvatures k; needed to update the stiffness matrices
at each iteration of each displacement increment. Much of the code was generated with the help
of Mathematica, the symbolic mathematics software of Wolfram Research, Inc. The need for using
the software became apparent in attempting to form the expressions for the derivatives required to

generate the [®] and [Y] matrices of Eqns (4.71) and (4.104) respectively.

The code has been used to analyze isotropic and laminated flat plates and beams, cylindrical
shells and arches, circular toroidal shells and toroidal shells of elliptical cross—séction. Analyses for
shells of multiple curvature (like the toroidal shell) are more computationally intensive, as even
the undeformed curvatures change when moving along a coordinate curve. These curvatures are
calculated and stored at the beginning of the analysis, but the undeformed curvatures must be
calculated at each Gauss point during the stiffness matrix integration process for each iteration of
each displacement increment. In all analyses, including flat plates, the deformed curvatures must
be calculated at each Gauss point in order to generate the new warping/stretching functions at

that point and the attendant constitutive array, [®], of Eq (4.12).

For most these analyses, the program was run on the SparcStation 20 workstation. Typical

run times were on the order of five minutes to several hours depending on the application.

The size and structure of the program differ significantly from its AFIT predecessor, ISHELL.
These differences are outlined in Table C.1. Note that while the source code is more than four
times the length of its predecessor, the run time is only about twice as much (for the same mesh),
indicating that JAGS is significantly more efficient in terms of speed versus size (on the Sparc

platform) than ISHELL. But a JAGS analysis need not use as many elements as one using ISHELL,
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Attribute

JAGS Code (1995) |

ISHELL Code (1988/92)

|

Analysis Type

Jaumann (T.L. Corotational)

T.L. Green’s Strain

Shell Geometries

Composite Plates, Cyl. Shells,
Spherical Caps, Shells of
Rev. w/arb. cross-sec, Shells
with Twist

Composite Plates, Cyl. Shells,
Spherical Caps

(same number of elements)

Lines of Code (approx.) 56,000 13,000
Number of Routines 118 41
Relative Execution Time 1.07 0.5571

Element

4-Noded, 44 DOF

8-Noded, 36 DOF

DOF Continuity

C! in all DOF except C°

in transverse shears 74, 75

CY in all DOF except C!
in transverse displacement w

Additional JAGS Features

e Variable element properties (number of plys, ply properties,
angle(s) of plys, thickness of plys)

e Strain Energy Calculations (total and by element)

e Varying Curvature within Element (in y direction)

e Includes Thickness Stretching

Table C.1 Differences in AFIT shell analysis codes

so, for a given problem, JAGS imposes only a modest penalty in speed. Note also that the new

code handles a much broader range of problems.

C.1 Using the JAGS Program.

The input file for the program is defined as follows. Note that integer values begin with letters

i-n, while real (double precision) values begin with a-h, o-z. Sample input files are provided in

Appendix C.3.

e Card 1: title

The first line of the program is a title. It is printed on the first line of the output file, and

may not exceed 133 characters.

e Card 2: iel,nanal,imesh,nrestr,nstore,idebug, isymm

The variable iel indicates the element type: 1 for plate or beam, 2 for circular cylindrical

shell, 3 for circular torus, and 4 for a torus of spline cross section.

Variable-nanal specifies whether analysis is linear (no iteration) or nonlinear: 0 for nonlinear,
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1 for linear.

Setting imesh=1 causes automated mesh generation. Alternate settings of this variable are
not recommended.

If the file is being started from a previously generated restart file, set nrestr to 1. Otherwise,
set it to 0. The restart file must be of the form filename.rst, where filename is the name of
the input file.

If nstore#0, the the displacement data for each converge increment of the nonlinear analysis
is written to filename.rst.

Flag idebug is chiefly a debugging tool and should be left at 0.

Variable isymm denotes symmetry conditions for output to the post-processing file. It is not

used, but should be set to 0.

Card 3: xjoined,yjoined,wupdate

The first two variables of this card govern mesh connection and are logical variables. If
the mesh is to be joined along the mesh ends corresponding to constant values of z, set
xjoined=.true.

Similarly, yjoined=.true. will connect the mesh along the ends corresponding to constant
values of y.

The variable wupdate determines whether the shear warping functions, and therefore the
constitutive matrix, will be updated to use the current deformed curvatures (wupdate=.true.,

or the undeformed curvatures wupdate=.false.

Card 4: intyp,ninc, imax,tol,nordr

Variable intyp=0 indicates load control for nonlinear incrementation, while intyp=1 is used
for displacement control. If intyp=2, the user has specified a contact problem. Note: the
contact algorithm is set up for iel=4. Use of any other value will produce unpredictable
results.

Variable ninc specifies the number of load or displacement increments.

C-3




A maximum of imax iterations will be performed in any one increment. The program halts
if imax is reached.

The initial convergence criterion, in percent, is specified by tol. JAGS will increase this
convergence tolerance if an increment fails to converge, notifying the user. Once the conver-
gence tolerance is increased to 100 % with failure to converge, the program halts. The»order

of Gauss integration used to integrate the stiffness equations is specified by nordr.

If nanal=0 and intyp=1, then

Card 4a: table(i)

This is the table of multipliers for the displacements specified on input. For example, if degree-
of-freedom 27 is to be displaced 2 units in three displacement increments, its displacement

would be specified as 2.0 (see Card 7b), and table(i) would be 0.333, 0.667, 1.0.

If intyp=2, then

Card 4b: nrefnods

This variable dictates the number of initial nodes in contact with a surface.

Card 4c: nrefnod (i) is the list of the nrefnods node numbers initially in contact.

Card 4c: ncontinc,zmininc,zmaxinc,nchecks

The number of contact displacement increments is specified by ncontinc, and the displace-
ment magnitude in a given increment is bounded by zmininc and zmaxinc. If the distance
to the closest node not yet in contact with the surface is between these two values, then that
distance is used as the increment step size. The variable nchecks is the number of nodes to
be checked for contact.

Card 4d: nctact (i)

This is the list of node numbers to be checked at each displacement increment.

If iel=1,2,3 then

Card 5: nx,ny
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These variables indicate the number of elements in the z and y directions, respectively.
Card 5a: dx(i)

This is the table of the width of each of the nx elements.

Card 5b: dy(i)

This is the table of the width of each of the ny elements.

If iel=4 then

Card 5: nx

This is the number of elements along the z axis of the mesh.

Card 5a: dx(i)

This is a table of the width of each of the nx elements. -

Card 5b: nsnodes,yp(1),yp(nsnodes) ,unifrm

The number of nodes used to define the spline cross section is nsnodes. Note that this need
not be the number of nodes in the mesh. It may be useful to use more points in defining the
spline than are used in defining the mesh.

The value of the slope of the spline at the first and last nodes is given by yp(1) and
yp(nsnodes) respectively.

A spline of uniform tension is generated when unifrm=.true., otherwise, the tension algo-

rithm generates the spline tension at nodes.

— If unifrm=.true. then
Card 5c¢: sigma(1)

This variable indicates the value of the tension factor to be used.

Cards 5d: idum,stheta(idum),srad(idum)

For each of the nsnodes, these three values are read.
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The variable idum is simply the entry number (1,2,3, etc.) and is not used (though the user
may find it helpful in reading the input file).

Variables stheta(i) and srad(i) are the angle (in degrees and measured in accordance with
Figure 3.5) and the radius to the point on the curve used for the spline.

Card 5e: nynodes

This variable specifies the number of nodes in the mesh in the y direction.

Cards 5f: idum,ytheta(idum)

These cards (one for each node) give the theta coordinate of each of the nynodes in the
y direction. The radial coordinate is calculated using the tension spline generated by the
nsnodes points on the curve. At least two points nynods must be used, and the first and last
points must coincide with stheta(1) and stheta(nsnodes). Any additional nodes must lie

between these two points.

Card 6: 14
The type of loading is specified by 1d. If 1d=4, then a uniform pressure load is assumed,

otherwise, the loads specified in vbsf (Card 8b) are applied.

Card 7: nbdy1

This specifies the number of nodes having displacement boundary conditions.

Cards 7a: nbound(i,j)

Each of these cards have twelve entries. The first is the node number, and the next eleven
indicate whether the degree of freedom at that node is prescribed (=1) or free (=0). A node
need only be listed if one or more of its degrees of freedom are prescribed. For exémple, if
node 112 has degrees of freedom u,v, and w prescribed, its entry would look like |
112,1,0,0,1,0,0,1,0,0,0,0

Card 7b: vbdy (i)

This vector contains an entry for each of the prescribed displacements from Cards 7a. (The

example node would contribute 3 entries.)
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e If 1d# 4 then
Card 8: nbsf
This is the number of degrees of freedom having specified loads.
Card 8a: ibsf(i)
This is an array nbsf degree-of-freedom numbers with prescribed loads.
Card 8b: vbsf(i)
These are the loads associated with the degrees of freedom specified in ibsf(i). Note that

the order of the degree-of-freedom numbers must match the order of the prescribed loads.

e Card 9: neconfs
This is the number of element configurations. Element configurations differ if the elements
have a different ply lay-up, different numbers of plys, different ply thicknesses, or different

material properties.

— If neconfs>1, then for properties 2 through neconfs,
Cards 9a: iconf,ipeles
The configuration number iconf> 2 is followed by ipeles, which is the number of

elements having configuration iconf.

— Cards 9b: ielprop(i)

These are the ipeles element numbers having properties iconf.

e For each of the neconfs configurations, beginning with the default configuration (configura-
tion 1), read
Card 10a: np(1i)
This is the number of plys in configuration i.
Then, for each of the np(i) plys, read
Cards 10b: e11(i),e22(i),e33(i),v12(i),v23(i),v13(i),g12(i),g23(i),g13(i)

Which are the material properties of the plys, from bottom to top.
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Card 10c: angl(i,j)

For configuration i, read the np(i) angles of the plys, from bottom to top.

Card 10d: zcoor(i,j)

For configuration i, read the np(i)+1 z coordinates of the ply interfaces. Care must be taken

so that a ply interface does not lie on (or very close to) the reference (z = 0) surface.

Card 11: Curvatures

This card is omitted for the flat plate or beam.

For iel=2, the cylindrical shell, the r@dius of the shell is input.

For iel=3, the circular torus, the major radius, the minor radius, and the offset (in degrees)
from y? = 0 to the start of the mesh (see Figure 3.5) are input. For iel=4, the spline torus,

the major radius of the torus is input.

If 1d=4 then

Card 12: pload,palign

The pressure load for 1d=4 is given by pload. It’s final value will be pload*ninc. The variable
palign is a logical variable specifying whether the direction of the pressure vector will be
changed to coincide with the surface normal as the object deforms. The direction is updated
if palign=.true.

Card 13: nfor

This variable specifies the number of nodal forces to be calculated at the end of each converged
increment.

Card 13a: ifor(i)

This is an array of nfor degree-of-freedom numbers for the force calculation.

Card 14: nstres
This variable specifies the number of elements for which to calculate stresses and strains at

the end of each increment.
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Cc.2

C.3

Card 14a: npoints This specifies the number of points in each layer through the thickness
for the stress/strain calculations. Card 14b: istres(i)

This is an array of nstres element numbers for the stress/strain calculations.

Program QOutput

JAGS produces some or all of the following files, depending on the nature of the analysis:

. filename.out: This is the general output file. It echoes the inputs, and gives displacement and

strain energy results. A history of loading and some of the details of the numerical solution

are also included.

. filename.xcp: This is a plot file generated for tension spline problems. It allows the user to

plot (using an x-y plotting program) the user-defined spline.

. filenamestrs.dat: This is the stress output calculated at each gauss point on the elements

requested in the input file by variables nstrs and istres(i).

. filenamestrn.dat: Same as above, but for strains.

. filename.m: A plot file for MATLAB. For problems having constant undeformed curvatures,

this file is generated. It generates plots for all warping/stretch functions simply by typing

filename at the first MATLAB prompt.

. filename.unv: A universal file for use by the I-DEAS program of SDRC. Used for post-

processing.

. filename.crv: A file detailing the undeformed curvatures calculated by the program for spline

cross-section problems.

Sample Input Files

Below are some sample input files as used by the JAGS finite element code.

C-9




This input file is used to analyze a composite beam having

C.3.1 The Coﬁposite Beam.

Eight displacement steps are applied in this displacement-control

11 plys of uniform thickness.

.false.,.false.,.true.

1,8,80,1.d-4,4
25.4-3,25.d-3,25.d~3,25.d~3,25.d-3,25.4-3,25.d-3,25.d-3,25.d-3,25 .d-3,25.4-3,

25.4-3,25.4-3,25.4-3,25.4-3,25.4-3,25.4-3,25.4-3,25.4-3,25.4-3,25.4-3,25.4-3

p173, laminated cantilevered beam, 22x1symm, disp control, 44 DOF
15.4-3

1,0,1,0,3,0,0
2.,4.,6.,8.,10.,12.,14.,16.

nonlinear analysis.
22,1

do
do
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295292979
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99999
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O OO OO0 OO
oYY ooYdd
OO0 Q0000
HOOOOOOOODOQCOOOOO0OOOO0OOOO0OOHOOOOCOOO
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- ]
o o
- o
- o

0.40,0.d0,0.d0,0.d0,0.d0,0.d0,0.d0,0.d0,0.d0,0.40,

0.d0,0.d0,0.d0,0.d40,0.d0,0.d0,0.40,0.d0,0.d0,0.40,
0.4d0,0.d0,0.40,0.d0,0.d0,0.40,0.d0,0.d0,0.d0,0.d0,

.d0,0.d0,0.40,
0,25.d-3,0.d0,

0.d
0.d
0.d40,0.40,0.4d0,

>

.do,
0
0,

0
0.d
0.d¢

)
)
B

0
0
0

,0.d0,0.d0,0.d0,0.d
,0.d0,0.d0,0.d0,0.d
,0.d0,0.d40,0.40,0.d

142.d49,9.849,9.8d49,0.3,0.345,0.3,6.49,3.63d9,6.0d9
142.d9,9.849,9.849,0.3,0.345,0.3,6.49,3.63d9,6.0d9

142.4'
142.4

,0.3,0.345,0.3,6.d9,3.63d9,6.0d9
,0.3,0.345,0.3,6.d9,3.63d9,6.0d9

9.849
9.849

>
>

9.849
9.849

’
)

9
9

142.49,9.8d49,9.849,0.3,0.345,0.3,6.d9,3.63d9,6.049
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142.d9,9.8d49,9.8d9,0.3,0.345,0.3,6.d9,3.63d9,6.0d9
142.d9,9.8d9,9.8d9,0.3,0.345,0.3,6.d9,3.63d9,6.0d9
142.d9,9.849

9.
9.
,9.8d49,0.3,0.345,0.3,6.49,3.63d9,6.049
142.d9,9.849,9.8d9,0.3,0.345,0.3,6.d9,3.63d9,6.049
142.d9,9.8d49,9.8d9,0.3,0.345,0.3,6.d9,3.63d9,6.0d9
142.d9,9.849,9.8d9,0.3,0.345,0.3,6.d9,3.63d9,6.0d9
0.,90.,0.,90.,0.,90.,0.,90.,0.,90.,0.
-744.4-6,-620.4-6,-496.d-6,-372.d-6,-248 .d-6,-124.4-6,
124.d-6,248.4-6,372.d4-6,496.d-6,620.d-6,744.4-6

1

249

1

20

22
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.false., indicating that the warping

This input file is used to analyze an isotropic deep arch
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